精英家教网 > 高中数学 > 题目详情
1.已知y=f(x)是奇函数,且满足f(x+2)+3f(-x)=0,当x∈[0,2]时,f(x)=x2-2x,则当x∈[-4,-2]时,f(x)的最小值为-$\frac{1}{9}$.

分析 根据函数奇偶性以及方程关系进行化简,求出函数在x∈[-4,-2]上的f(x)的表达式,结合一元二次函数的性质利用配方法进行求解即可.

解答 解:∵y=f(x)是奇函数,且满足f(x+2)+3f(-x)=0,
∴f(x+2)=-3f(-x)=3f(x),
则f(x+4)=3f(x+2)=9f(x),
即f(x)=$\frac{1}{9}$f(x+4),
若x∈[-4,-2],
则x+4∈[0,2],
∵当x∈[0,2]时,f(x)=x2-2x=(x-1)2-1,∴当x=1时,函数f(x)取得最小值为-1,
当x∈[-4,-2]时,x+4∈[0,2],此时函数fmin(x)=$\frac{1}{9}$fmin(x+4)=$\frac{1}{9}$×(-1)=-$\frac{1}{9}$,
∴函数f(x)取得最小值-$\frac{1}{9}$,
故答案为:-$\frac{1}{9}$

点评 本题主要考查函数最值的求解,根据函数奇偶性的性质,求出函数的解析式,利用一元二次函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x3+bx2+d在区间(0,2)内为减函数,且2是函数的一个零点,则f(1)的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,若sinAsinB十cosAcosB=1,则它是(  )三角形.
A.直角B.等腰C.等腰直角D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,sinA+cosA=$\frac{\sqrt{2}}{2}$.
(1)求sinAcosA
(2)求sinA-cosA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若关于x的不等式3ax2+2x-1>0在(2,+∞)上有解,则实数a的取值范围是[-$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知正项数列{an}的前n项和为Sn,且a1=2,4Sn=an•an+1,n∈N+
(1)求数列的通项公式an
(2)求前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在正三棱锥S-ABC中,M,N分别是棱SC、BC的中点,且MN⊥AM,若侧棱SA=$\sqrt{3}$,则正三棱锥S-ABC外接球的表面积是9π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不等式x+y>2所表示的平面区域是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.cos85°cos25°+sin85°sin25°=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案