【题目】设直线l的方程为(a+1)x+y+2﹣a=0(a∈R)
(1)若直线l在两坐标轴上的截距相等,则直线l的方程是;
(2)若直线l不经过第二象限,则实数a的取值范围是 .
【答案】
(1)3x+y=0或x+y+2=0
(2)(﹣∞,﹣1]
【解析】解:(1.)令x=0,得y=a﹣2. 令y=0,得x= (a≠﹣1) ∵l在两坐标轴上的截距相等,∴a﹣2= ,解得a=2或a=0.
∴所求的直线l方程为3x+y=0或x+y+2=0.
(2.)直线l的方程可化为 y=﹣(a+1)x+a﹣2.
∵l不过第二象限,∴ ,解得a≤﹣1.
∴a的取值范围为(﹣∞,﹣1].
所以答案是:3x+y=0或x+y+2=0,(﹣∞,﹣1]
【考点精析】解答此题的关键在于理解截距式方程的相关知识,掌握直线的截距式方程:已知直线与轴的交点为A,与轴的交点为B,其中,以及对一般式方程的理解,了解直线的一般式方程:关于的二元一次方程(A,B不同时为0).
科目:高中数学 来源: 题型:
【题目】已知 , 的夹角为120°,| |=2,| |=3,记| =3 ﹣2 , =2 +k .
(1)若 ⊥ ,求实数k的值.
(2)是否存在实数k,使得 ∥ ?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的公差为d,前n项和为Sn , 等比数列{bn}的公比为q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式
(2)当d>1时,记cn= ,求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:
质量指标值 | |||
等级 | 三等品 | 二等品 | 一等品 |
从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:
(1)根据以上抽样调查数据 ,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?
(2)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知⊙O:x2+y2=1和点M(4,2).
(Ⅰ)过点M向⊙O引切线l,求直线l的方程;
(Ⅱ)求以点M为圆心,且被直线y=2x﹣1截得的弦长为4的⊙M的方程;
(Ⅲ)设P为(Ⅱ)中⊙M上任一点,过点P向⊙O引切线,切点为Q.试探究:平面内是否存在一定点R,使得 为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C的圆心在坐标原点,且与直线l1:x﹣y﹣2 =0相切 (Ⅰ)求直线l2:4x﹣3y+5=0被圆C所截得的弦AB的长.
(Ⅱ)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N,求直线MN的方程
(Ⅲ) 若与直线l1垂直的直线l与圆C交于不同的两点P,Q,若∠POQ为钝角,求直线l纵截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(cosα,sinα), =(cosβ,sinβ),| ﹣ |= .
(1)求cos(α﹣β)的值;
(2)若0<α< ,﹣ <β<0,且sinβ=﹣ ,求sinα的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com