(本题满分14分)
已知函数,点.
(Ⅰ)若,函数在上既能取到极大值,又能取到极小值,求的取值范围;
(Ⅱ) 当时,对任意的恒成立,求的取值范围;
(Ⅲ)若,函数在和处取得极值,且,是坐标原点,证明:直线与直线不可能垂直.
解:(Ⅰ)当时,,
令得,根据导数的符号可以得出函数在处取得极大值,
在处取得极小值.函数在上既能取到极大值,又能取到极小值,
则只要且即可,即只要即可.
所以的取值范围是. ………… 4分
(Ⅱ)当时,对任意的恒成立,
即对任意的恒成立,
也即在对任意的恒成立.
令,则. ………… 6分
记,则,
则这个函数在其定义域内有唯一的极小值点,
故也是最小值点,所以,
从而,所以函数在单调递增.
函数.故只要即可.
所以的取值范围是 ………… 9分
(Ⅲ)假设,即,
即,
故,
即.
由于是方程的两个根,
故.代入上式得. ………… 12分
,
即,与矛盾,
所以直线与直线不可能垂直. ………… 14分
【解析】略
科目:高中数学 来源: 题型:
π |
3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,为上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求实数m的值
(Ⅱ)若ACRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点是⊙:上的任意一点,过作垂直轴于,动点满足。
(1)求动点的轨迹方程;
(2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数.
(1)求函数的定义域;
(2)判断的奇偶性;
(3)方程是否有根?如果有根,请求出一个长度为的区间,使
;如果没有,请说明理由?(注:区间的长度为).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com