精英家教网 > 高中数学 > 题目详情

【题目】如图, 为坐标原点,双曲线和椭圆均过点,且以的两个顶点和的两个焦点为顶点的四边形是面积为2的正方形.

(1)的方程;

(2)是否存在直线,使得交于两点,与只有一个公共点,且?证明你的结论.

【答案】(1);(2)见解析.

【解析】试题分析:(1)利用正方形面积为2,即可得到对角线的长为2,则可得的两个顶点和的两个焦点的坐标,求的的值,再结合点在双曲线上,代入双曲线结合之间的关系即可求的的值,得到双曲线的方程,椭圆的焦点坐标已知,在椭圆上,利用椭圆的定义即为到两焦点的距离之和,求出距离即可得到的值,利用之间的关系即可求出的值,得到椭圆的标准方程.

(2)分以下两种情况讨论,当直线的斜率不存在时,直线只有一个公共点,即直线经过的顶点,得到直线的方程,代入双曲线求的点的坐标验证是否符合等式,当直线的斜率存在时,直线的方程为,联立直线与双曲线消元得到二次方程,再利用根与系数之间的关系得到关于两点横纵坐标之和的表达式,利用,再立直线与椭圆的方程即可得到直线的关系,可得到内积不可能等于0,进而得到,,即不存在这样的直线.

的焦距为,由题可得,从而,因为点在双曲线,所以,由椭圆的定义可得

,于是根据椭圆之间的关系可得,所以的方程为.

(2)不存在符合题设条件的直线.

若直线垂直于,即直线的斜率不存在,因为只有一个公共点,所以直线的方程为,

,易知所以,此时.

,同理可得.

当直线不垂直于轴时,即直线的斜率存在且设直线的方程为,联立直线与双曲线方程可得,相交于两点时,,满足方程,由根与系数的关系可得,于是,联立直线与椭圆可得

,因为直线与椭圆只有一个交点,

所以,化简可得,因此

,

于是,,所以,

综上不存在符合题目条件的直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在一个坡度一定的山坡AC的顶上有一高度为25m的建筑物CD,为了测量该山坡相对于水平地面的坡角θ,在山坡的A处测得∠DAC=15°,沿山坡前进50m到达B处,又测得∠DBC=45°,根据以上数据可得cosθ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某民营企业生产两种产品,根据市场调查与预测,产品的利润与投资成正比,其关系如图甲,产品的利润与投资的算术平方根成正比,其关系如图乙(注:利润与投资单位:万元).

(1)分别将两种产品的利润表示为投资(万元)的函数关系式;

(2)该企业已筹集到10万元资金,并全部投入两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣1:几何证明选讲
如图,已知四边形ABCD内接于⊙O,且AB是的⊙O直径,过点D的⊙O的切线与BA的延长线交于点M.

(1)若MD=6,MB=12,求AB的长;
(2)若AM=AD,求∠DCB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.

(1)若A∩B={2},求实数a的值;

(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的方程为2kx2﹣2x﹣5k﹣2=0的两个实数根一个小于1,另一个大于1,则实数k的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线与曲线满足下列两个条件:()直线在点处与曲线相切; ()曲线在点附近位于直线的两侧,则称直线在点处“切过”曲线.下列命题正确的是__________.(写出所有正确命题的编号)

直线在点处“切过”曲线

直线在点处“切过”曲线

直线在点处“切过”曲线

直线在点处“切过”曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为的正方体中,点是棱的中点, 是底面上(含边界)一动点,满足,则线段长度的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PPD//平面MACPA=PD=,AB=4.

(I)求证:MPB的中点;

(II)求二面角B-PD-A的大小;

(III)求直线MC与平面BDP所成角的正弦值.

查看答案和解析>>

同步练习册答案