精英家教网 > 高中数学 > 题目详情
A、B两点在平面α的同侧,AC⊥α于C.BD⊥α于D.AD∩BC=E、EF⊥α于F,AC=a、BD=b,则EF的长是( )
A.
B.
C.
D.
【答案】分析:由题意,ACDB是一个直角梯形,对角线和BC相交于E,EF⊥CD于F,就有AC‖BD‖EF,利用比例的性质,即可得出结论.
解答:解:由题意,ACDB是一个直角梯形,对角线和BC相交于E,EF⊥CD于F.
就有,AC‖BD‖EF;
可得:CF:FD=AE:ED=AC:BD=a:b;
所以,EF:BD=CF:CD=CF:(CF+FD)=a:(a+b),
可得:EF=
故选A.
点评:本题考查点面距离的计算,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

A、B两点在平面α的同侧,AC⊥α于C.BD⊥α于D.AD∩BC=E、EF⊥α于F,AC=a、BD=b,则EF的长是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山二模)已知平面上一定点C(-1,0)和一定直线l:x=-4.P为该平面上一动点,作PQ⊥l,垂足为Q,(
PQ
+2
PC
)(
PQ
-2
PC
)=0

(1)问点P在什么曲线上,并求出该曲线方程;
(2)点O是坐标原点,A、B两点在点P的轨迹上,若
OA
OB
=(1+λ)
OC
,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:013

AB=20cm,A、B两点到平面α的距离都是6cm,则A、B两点在平面α上的射影的距离为

[  ]

查看答案和解析>>

科目:高中数学 来源:眉山二模 题型:解答题

已知平面上一定点C(-1,0)和一定直线l:x=-4.P为该平面上一动点,作PQ⊥l,垂足为Q,(
PQ
+2
PC
)(
PQ
-2
PC
)=0

(1)问点P在什么曲线上,并求出该曲线方程;
(2)点O是坐标原点,A、B两点在点P的轨迹上,若
OA
OB
=(1+λ)
OC
,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省衡水市冀州中学高考数学仿真模拟试卷1(文科)(解析版) 题型:解答题

已知平面上一定点C(-1,0)和一定直线l:x=-4.P为该平面上一动点,作PQ⊥l,垂足为Q,
(1)问点P在什么曲线上,并求出该曲线方程;
(2)点O是坐标原点,A、B两点在点P的轨迹上,若,求λ的取值范围.

查看答案和解析>>

同步练习册答案