精英家教网 > 高中数学 > 题目详情
5.求函数f(x)=x3-4x2+5x-4在x=2处的切线方程为x-y-4=0.

分析 求出函数的导数,求出切线的斜率,然后求出切线方程.

解答 解:函数f(x)=x3-4x2+5x-4的导数为:f′(x)=3x2-8x+5,
切线的斜率为:f′(2)=12-16+5=1,
f(2)=8-16+10-4=-2.
切线方程为:y+2=x-2,
即x-y-4=0.
故答案为:x-y-4=0.

点评 本题考查函数的导数的应用,切线方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设A={x|x为合数},B={x|x为质数},N表示自然数集,若E满足A∪B∪E=N,则这样的集合E(  )
A.只有一个B.只有两个C.至多3个D.有无数个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}中a1=1,且$\frac{{{a_{n+1}}}}{a_n}=\frac{n+2}{n}$,则an=$\frac{n(n+1)}{2}(n∈{N}^{*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=($\frac{1}{3}$)x-log2x,0<a<b<c,f(a)f(b)f(c)<0,实数d是函数f(x)的一个零点.给出下列四个判断:
①d>a;②d>b;③d<c;④d>c.其中可能成立的是①②③(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设△ABC的内角A,B,C所对应的边分别为a,b,c,已知$\frac{a+b}{sin(A+B)}$=$\frac{a-c}{sinA-sinB}$.
(Ⅰ)求角B;
(Ⅱ)若cosA=$\frac{{\sqrt{6}}}{3}$,且△ABC的面积为$\frac{{3\sqrt{2}+\sqrt{3}}}{2}$,试求sinC和a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.2015是等差数列3,7,11…的第     项(  )
A.502B.503C.504D.505

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.框图如图所示,最后输出的a=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在直角坐标系中,函数$f(x)={(\frac{1}{2})^{|{x+1}|}}$的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\left\{\begin{array}{l}{x+2(x≤-1)}\\{{x}^{2}(-1<x<2)}\\{2x(x≥2)}\end{array}\right.$. 
(1)求f(-4),f(3),f[f(-2)]的值;
(2)若f(a)=0,求a的值.

查看答案和解析>>

同步练习册答案