精英家教网 > 高中数学 > 题目详情

【题目】某高中政教处为了调查学生对一带一路的关注情况,在全校组织了一带一路知多少的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制)的茎叶图如下:.

(1)写出该样本的中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数;

(2)从所抽取的70分以上的学生中再随机选取4人,记表示测试成绩在80分以上的人数,的分布列和数学期望

【答案】(1)中位数为76,测试成绩在70分以上的约为2000(2)见解析

【解析】分析:(1)根据茎叶图中的数据可得中位数,然后根据样本中70分以上的成绩所占的比例可得总体中70分以上的人数.(2)根据题意得到的可能取值分别求出对应的概率得到分布列,然后可得期望

详解:(1)由茎叶图可得中位数为76,样本中70分以上的所占比例为

故可估计该校测试成绩在70分以上的约为3000×2000

(2由题意可得的可能取值为0,1,2,3,4.

,,,

.

的分别列为:

0

1

2

3

4

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2+aln(x+1). (Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数F(x)=f(x)+ln 有两个极值点x1 , x2且x1<x2 , 求证F(x2)>

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.
(1)证明:EF∥BC;
(2)若AG等于⊙O的半径,且AE=MN=2 ,求四边形EBCF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数, 得到如下资料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

昼夜温差

10

11

13

12

8

6

就诊人数(个)

22

25

29

26

16

12

该兴趣小组确定的研究方案是:先从这六组数据中选取 2 组,用剩下的 4 组数据求 线性回归方程,再用被选取的 2 组数据进行检验;

(Ⅰ)求选取的 2 组数据恰好是相邻两个月的概率;

(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出 关于的线性回归方程 ;

(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人, 则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

附:对于一组数据 ,…,( ,其回归直线 的斜率和截距的最小二乘估计分别为

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校餐厅新推出A、B、C、D四款套餐,某一天四款套餐销售情况的条形图如下.为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:

满意

一般

不满意

A套餐

50%

25%

25%

B套餐

80%

0

20%

C套餐

50%

50%

0

D套餐

40%

20%

40%

(Ⅰ)若同学甲选择的是A款套餐,求甲的调查问卷被选中的概率;
(Ⅱ)若想从调查问卷被选中且填写不满意的同学中再选出2人进行面谈,求这两人中至少有一人选择的是D款套餐的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1x+my+1=0l2:(m-3x-2y+13-7m=0

1)若l1l2,求实数m的值;

2)若l1l2,求l1l2之间的距离d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDFE中,四边形ABCD是矩形,AB∥EF,AB=2EF,∠EAB=90°,平面ABFE⊥平面ABCD.

(1)若G点是DC的中点,求证:FG∥平面AED.

(2)求证:平面DAF⊥平面BAF.

(3)若AE=AD=1,AB=2,求三棱锥D-AFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是等差数列,;数列的前项和是,且=1.

(1)求数列的通项公式;

(2)求证:数列是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,且点在椭圆上,为坐标原点

(1)求椭圆的标准方程

(2)过椭圆上异于其顶点的任一点,作圆的切线,切点分别为不在坐标轴上),若直线的横纵截距分别为,求证:为定值

查看答案和解析>>

同步练习册答案