精英家教网 > 高中数学 > 题目详情

【题目】某校从参加高三年级期中考试的学生中随机统计了40名学生的政治成绩,40名学生的成绩全部在40分至100分之间,据此绘制了如图所示的样本频率分布直方图.

(1)求成绩在[80,90的学生人数;

(2)从成绩大于等于80分的学生中随机选2名学生,求至少有1 名学生成绩在[90,100]的概率.

【答案】12

【解析】

试题分析:1根据频率直方图可知其频率为计算学生人数2 表示事件在成绩大于等于分的学生中随机选两名学生,至少有名学生成绩在区间,由已知和1的结果可知成绩在区间内的学生有,记这四个人分别为,成绩在区间内的学生有,记这两个人分别为,分别写出事件空间及事件,得到概率.

试题解析:1因为各组的频率之和为1,所以成绩在区间[80,90的频率为

1-0.005×2+0.015+0.020+0.045×10=0.1,

所以,40名学生中成绩在区间[80,90的学生人数为40×0.1=4.

2A表示事件在成绩大于等于80分的学生中随机选两名学生,至少有1名学生成绩在区间[90,100],

由已知和1的结果可知成绩在区间[80,90内的学生有4,记这四个人分别为a,b,c,d,成绩在区间[90,100]内的学生有2,记这两个人分别为e,f,则选取学生的所有可能结果为:

a,b,a,c,a,d,a,e,a,f,b,c,b,d,b,e,b,f,c,d,c,e,c,f,d,e,d,f,e,f,基本事件数为15,事件至少1名学生成绩在区间[90,100]的可能结果为:

a,e,a,f,b,e,b,f,c,e,c,f,d,e,d,f,e,f,基本事件数为9,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 分别为双曲线的左、右焦点, 为双曲线的左顶点,以 为直径的圆交双曲线某条渐近线于 两点,且满足,则该双曲线的离心率为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合P={(x,y)||x|+|y|≤1,x∈R,y∈R},Q={(x,y)|x2+y2≤1,x∈R,y∈R},R={(x,y)|x4+y2≤1,x∈R,y∈R}则下列判断正确的是(
A.PQR
B.PRQ
C.QPR
D.RPQ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知直线与双曲线交于A,B两点,且点A的横坐标为4.

(1)求的值及B点坐标;

(2)结合图形,直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)问题发现

如下图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE。

填空:∠AEB的度数为____________

线段AD、BE之间的数量关系是_________

(2)拓展探究

如下图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=900, 点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE。请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由。

(3)解决问题

如下图,在正方形ABCD中,CD=。若点P满足PD=1,且∠BPD=900,请直接写出点A到BP的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=cos2x﹣ sin2x,把y=f(x)的图象向左平移φ(φ>0)个单位后,恰好得到函数g(x)=﹣cos2x﹣ sin2x的图象,则φ的值可以为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在中, 分别为 的中点.将沿折起到的位置,使,如图2,连结

(Ⅰ)求证:平面 平面

(Ⅱ)若中点,求直线与平面所成角的正弦值;

(Ⅲ)线段上是否存在一点,使二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},an≥0,a1=0,an+12+an+1﹣1=an2(n∈N).记Sn=a1+a2+…+an . Tn= + +…+ .求证:当n∈N*
(1)0≤an<an+1<1;
(2)Sn>n﹣2;
(3)Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为圆上的动点, 的坐标为 在线段上,满足.

(Ⅰ)求的轨迹的方程.

(Ⅱ)过点的直线交于两点,且,求直线的方程.

查看答案和解析>>

同步练习册答案