精英家教网 > 高中数学 > 题目详情

【题目】(2015·四川)已知函数f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;
(2)证明:存在a(0,1),使得f(x)≥0,在区间(1,+)内恒成立,且f(x)=0在(1,+)内有唯一解.

【答案】
(1)

当0<a<时,g(x)在区间(0, ), (,+)上单调递增, 在区间(, )上单调递减;当a≥时,在区间(0,+)上单调递增.


(2)

详见解析.


【解析】(1)由已知, 函数f(x)的定义域为(0,+), g(x)=f'(x)=2x-2a-2lnx-2(1+), 所以 g'(x)=2-+=, 当0<a<时,g(x)在区间(0, ), (,+)上单调递增, 在区间(, )上单调递减;当a≥时,在区间(0,+)上单调递增. (2)由f'(x)=2x-2a-2lnx-2(1+)=0, 解得a=, 令(x)=-2(x+)lnx+x2-2()x-2()2+, 则(1)=1>0, (e)=--2<0, 故存在x0(1,e), 使得(x0)=0, 令a0=, u(x)=x-1-lnx(x≥1), 由u'(x)=1-≥0知, 函数u(x)在区间(1, +)上单调递增。所以0=, 即a(0,1), 当a=a0时, 有f'(x0)=0, f(x0)= (x0)=0, 由(1)知, 函数f'(x)在区间(1,+)上单调递增., 故当x(1,x0)时, 有f'(x0)<0, 从而f(x)> f(x0)=0, 当x(x0, +)时, 有f'(x0)>0, 从而f(x)> f(x0)=0, 所以, 当x(1,+)时, f(x)≥0。 综上所述,存在a(0,1),使得f(x)≥0,在区间(1,+)内恒成立,且f(x)=0在(1,+)内有唯一解.
本题考查导数的运算、导数在研究函数中的应用、函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、分类与 整合,化归与转化等数学思想.本题作为压轴题,难度系数应在0.3以下.导数与微积分作为大学重要内容,在中学要求学生掌握其基础知识,在高考题中也必有 体现.一般地,只要掌握了课本知识,是完全可以解决第(1)题的,所以对难度最大的最后一个题,任何人都不能完全放弃,这里还有不少的分是志在必得的.解 决函数题需要的一个重要数学思想是数形结合,联系图形大胆猜想. 在本题中,结合待证结论,可以想象出f(x)的大致图象,要使得f(x)≥0在区间(1,+)内恒成立,且f(x)=0在(1,+)内有唯一解,则这个解x0应为极小值点,且极小值为0,当x(1,x0)时,f(x)的图象递减; 当x(1,+)时,f(x)的图象单调递增,顺着这个思想,便可找到解决方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)证明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直线AE与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015新课标II)在直角坐标系xoy中,曲线C1(t为参数,t≠0),其中0,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:=2sinC3:=2cos
(1)(Ⅰ)求C2与C1交点的直角坐标
(2)(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱台上、下底面分别是边长为3和6的正方形,,且
底面,点分别在棱上.
(1)若是的中点,证明:;
(2若//平面,二面角的余弦值为,求四面体的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·四川)设数列{an}的前n项和Sn=2an-a1 , 且a1, a2+1, a3成等差数列.
(1)求数列{an}的通项公式;
(2)记数列{}的前n项和Tn , 求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·四川)设数列{an}的前n项和Sn=2an-a1 , 且a1, a2+1, a3成等差数列.
(1)求数列{an}的通项公式;
(2)记数列{}的前n项和Tn , 求得|Tn-1|<成立的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量平行.
(1)求A。
(2)若a=, b=2求△ABC的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为了l1, l2 , 山区边界曲线为C , 计划修建的公路为l , 如图所示,MNC的两个端点,测得点M到l1, l2 的距离分别为5千米和40千米,点N到l1, l2的距离分别为20千米和2.5千米,以l1, l2所在的直线分别为xy轴,建立平面直角坐标系xOy , 假设曲线C符合函数y=(其中ab为常数)模型.

(1)求ab的值;
(2)设公路l与曲线C相切于P点,P的横坐标为t.
①请写出公路l长度的函数解析式f(t),并写出其定义域;
②当t为何值时,公路l的长度最短?求出最短长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F为抛物线E:的焦点,点A(2,m)在抛物线E上,且|AF|=3

(1)求抛物线E的方程;
(2)已知点G(-1,0) , 延长AF交抛物线E于点B证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.

查看答案和解析>>

同步练习册答案