精英家教网 > 高中数学 > 题目详情

【题目】某校随机调查了80位学生,以研究学生中爱好羽毛球运动与性别的关系,得到下面的列联表:

爱好

不爱好

合计

20

30

50

10

20

30

合计

30

50

80

(Ⅰ)将此样本的频率估计为总体的概率,随机调查了本校的3名学生,设这3人中爱好羽毛球运动的人数为,求 的分布列,数学期望及方差;

(Ⅱ)根据表中数据,能否有充分证据判断爱好羽毛球运动与性别有关?若有,有多大把握?

0.500

0.100

0.050

0.010

0.455

2.706

3.841

6.635

附:

【答案】(1) ;(2)没有充分证据判断爱好羽毛球运动与性别有关.

【解析】试题分析】(1)先求出随机变量的概率 及分布列,再运用随机变量的数学期望公式及方差计算公式求解;(2)先借助22列联表中的数据,运用卡方计算公式

算出,再与参数表进比对,从而做出判断:

解:(1)任一学生爱好羽毛球的概率为,故.

;

;

的分布列为

0

1

2

3

(2)

故没有充分证据判断爱好羽毛球运动与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市化工厂三个车间共有工人1 000名,各车间男、女工人数如下表:

第一车间

第二车间

第三车间

女工

173

100

y

男工

177

x

z

已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0. 15.

(1)求x的值;

(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线与直线垂直.(注: 为自然对数的底数)

(1)求的值;

(2)若函数在区间上存在极值,求实数的取值范围;

(3)求证:当时, 恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,右顶点为,上顶点为,过三点的圆的圆心坐标为

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线为常数, )与椭圆交于不同的两点

(ⅰ)当直线,且时,求直线的方程;

(ⅱ)当坐标原点到直线的距离为,且面积为时,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求曲线在点处的切线方程;

(2)若关于的不等式恒成立,求整数的最小值;

(3)若正实数满足,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论.现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如下表:

编号

成绩

1

2

3

4

5

物理(

90

85

74

68

63

数学(

130

125

110

95

90

(1)求数学成绩关于物理成绩的线性回归方程精确到),若某位学生的物理成绩为80分,预测他的数学成绩;

(2)要从抽取的五位学生中随机选出三位参加一项知识竞赛,以表示选中的学生的数学成绩高于100分的人数,求随机变量的分布列及数学期望.

(参数公式: .)

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为,双曲线的一条渐近线与轴所成的夹角为,且双曲线的焦距为.

(1)求椭圆的方程;

(2)设分别为椭圆的左,右焦点,过作直线 (与轴不重合)交椭圆于 两点,线段的中点为,记直线的斜率为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察图中各正方形图案,每条边上有an个圆点,第an个图案中圆点的个数是an,按此规律推断出所有圆点总和Snn的关系式为(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,圆C的参数方程为 (θ为参数),直线l经过定点P(2,3),倾斜角为.

(Ⅰ)写出直线l的参数方程和圆C的标准方程;

(Ⅱ)设直线l与圆C相交于AB两点,求|PA|·|PB|的值.

查看答案和解析>>

同步练习册答案