精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lg
1-x
1+x
的定义域为集合A,a,b∈A
(1)判断函数f(x)的奇偶性
(2)求证:f(a)+f(b)=f(
a+b
1+ab
考点:对数函数的图像与性质,函数奇偶性的判断
专题:函数的性质及应用
分析:(1)由函数定义域关于原点对称,考查f(-x)与f(x)的关系,依据定义判断.
(2)若a、b∈D,先化简f(a)+f(b),再化简f(
a+b
1+ab
)的解析式,然后作比较发现是相等的式子.
解答: 解:(1)由题意得:
1-x
1+x
>0,
∴-1<x<1,
∴函数的定义域为:(-1,1);
故函数的定义域关于原点对称,
又∵f(-x)=lg
1+x
1-x
=-lg
1-x
1+x
=-f(x),
∴函数是奇函数;
(2)若a、b∈D,f(a)+f(b)=lg
1-a
1+a
+lg
1-b
1+b
=lg
1-a-b+ab
1+a+b+ab

f(
a+b
1+ab
)=lg
1-
a+b
1+ab
1+
a+b
1+ab
=lg
1-a-b+ab
1+a+b+ab

∴f(a)+f(b)=f(
a+b
1+ab
).
点评:本题考查函数的定义域的求法,利用定义判断函数的奇偶性,以及利用对数的运算性质证明等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的前几项和为Sn,若an=
1
n(n+1)
,则Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)在R上满足f(1+x)=f(1-x),f(x+2)=-f(2-x).
(1)求f(2)的值.
(2)判断f(x)的奇偶性,并说明理由.
(3)若f(1)=
1
2
,试求出f(2014)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P到点(0,-3)与到点(0,3)的距离之差为2,则点P的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若偶函数f(x)满足f(x+2)=-f(x),且当x∈(0,1)时,f(x)=3x-2,则f(log354)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某天,甲要去银行办理储蓄业务,已知银行的营业时间为9:00至17:00,设甲在当天13:00至18:00之间任何时间去银行的可能性相同,那么甲去银行恰好能办理业务的概率是(  )
A、
1
3
B、
3
4
C、
5
8
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

两圆x2+y2+2x-6y-26=0和x2+y2-4x+2y+4=0的位置关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数的图象是函数f(x)=sin2x-
3
cos2x的图象向右平移
π
3
个单位得到的,则函数的图象的对称轴可以为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(-3,2)在抛物线C:y2=2px(p>0)的准线上,过点P的直线与抛物线C相切于A,B两点,则直线AB的斜率为
 

查看答案和解析>>

同步练习册答案