精英家教网 > 高中数学 > 题目详情

【题目】已知函数处取得极值,其中为常数.若对任意,不等式恒成立,求的取值范围.

【答案】.

【解析】试题分析: 函数处取得极值 ,列出方程组可求出a,b的值,代入函数求出解析式,对函数求导判断单调性,求出函数的极小值, 且此极小值也是最小值, 要使对任意恒成立,只需小于等于函数的最小值,代入解出c的取值范围即可.

试题解析:

由题意知f(1)=bc=-3-c,因此b=-3.

f(x)求导,得

f′(x)4ax3ln xax4·4bx3

x3(4aln xa+4b).

由题意知f′(1)=0,得a+4b=0,解得a=12,

从而f′(x)=48x3ln x(x>0).令f′(x)=0,解得x=1.

0<x<1时,f′(x)<0,此时f(x)为减函数;

x>1时,f′(x)>0,此时f(x)为增函数.

所以f(x)x=1处取得极小值f(1)=-3-c

并且此极小值也是最小值.

所以要使f(x)≥-2c2(x>0)恒成立,只需-3-c≥-2c2即可.

整理得2c2c3≥0,解得cc1.

所以c的取值范围为.

点睛: 本题考查利用导数判断函数的单调性,求函数的极值和最值以及函数的恒成立问题,属于中档题目.恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理.也可构造新函数然后利用导数来求解,注意利用数形结合的数学思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,⊥平面,且四边形是平行四边形.

(1)求证:

(2)当点的什么位置时,使得∥平面,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图F1F2分别是椭圆C的左、右焦点A是椭圆C的顶点B是直线AF2与椭圆C的另一个交点F1AF2=60°.

(1)求椭圆C的离心率;

(2)已知△AF1B的面积为40ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如表:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8


(1)计算甲、乙两人射箭命中环数的平均数和标准差;
(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是由正数组成的等比数列,公比q=2,且a1a2a3…a30=230 , 那么a3a6a9…a30等于(
A.210
B.220
C.216
D.215

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角,A,B,C对边的边长分别为a,b,c,且acosB﹣bcosA= c.
(1)求 的值;
(2)求tan(A﹣B)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点A(1,2),B(3,1)到直线l距离分别是 ,则满足条件的直线l共有( )条.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明计划在811日至820日期间游览某主题公园,根据旅游局统计数据,该主題公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比, 以下为舒适, 为一般, 以上为拥挤),情况如图所示,小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览.

(1)求小明连续两天都遇上拥挤的概率;

(2)设是小明游览期间遇上舒适的天数,求的分布列和数学期望;

(3)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)

查看答案和解析>>

同步练习册答案