精英家教网 > 高中数学 > 题目详情
用数学归纳法证明不等式的过程中,
递推到时的不等式左边(   ).
A.增加了B.增加了
C.增加了“”,又减少了“
D.增加了,减少了“
C.

分析:本题考查的知识点是数学归纳法,观察不等式“左边的各项,他们都是以开始,以 项结束,共n项,当由n=k到n=k+1时,项数也由k变到k+1时,但前边少了一项,后面多了两项,分析四个答案,即可求出结论.
解:n=k时,左边=+++
n=k时,左边=+++
=(+++)-++
故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列中,的前项和,且的等差中项,其中是不等于零的常数.
(1)求; (2)猜想的表达式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知x,y∈Z,n∈N*,设f(n)是不等式组表示的平面区域内可行解的个数,则f(1)=_______;f(2)=_______;f(n)=_______

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是否存在abc使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求证:二项式x2n-y2n (n∈N*)能被x+y整除.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

abcxyz均为正数,且a2b2c2=10,x2y2z2=40,axbycz=20,则等于(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面内有n条直线(n≥3),其中有且仅有两条直线相互平行,任意三条不过同一点,若用f(n)表示这n条直线交点的个数,则当n≥4时,f(n)="(  " )
A.(n-1)(n+2)B.(n-1)(n-2)
C.(n+1)(n+2)D.(n+1)(n-2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明,则当n=k+1时左端应在n=k的基础上加上(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本小题满分10分)已知数列中,
(Ⅰ)求;(Ⅱ)猜想的表达式,并用数学归纳法加以证明.

查看答案和解析>>

同步练习册答案