A. | x=2或3x-4y+10=0 | B. | x=2或x+2y-10=0 | C. | y=4或3x-4y+10=0 | D. | y=4或x+2y-10=0 |
分析 切线的斜率存在时设过点P的圆的切线斜率为k,写出点斜式方程再化为一般式.根据圆心到切线的距离等于圆的半径这一性质,由点到直线的距离公式列出含k的方程,由方程解得k,然后代回所设切线方程即可.切线斜率不存在时,直线方程验证即可.
解答 解:将点P(2,4)代入圆的方程得22+32=13>4,∴点P在圆外,
当过点P的切线斜率存在时,设所求切线的斜率为k,
由点斜式可得切线方程为y-4=k(x-2),即kx-y-2k+4=0,
∴$\frac{|-2k+4|}{\sqrt{1+{k}^{2}}}$=2,解得k=$\frac{3}{4}$.
故所求切线方程为3x-4y+16=0.
当过点P的切线斜率不存在时,方程为x=2,也满足条件.
故所求圆的切线方程为3x-4y+16=0或x=2.
故选A.
点评 本题考查直线与圆的位置关系,考查切线方程.若点在圆外,所求切线有两条,特别注意当直线斜率不存在时的情况,不要漏解.
科目:高中数学 来源: 题型:选择题
A. | f(x)=x${\;}^{-\frac{1}{2}}$ | B. | f(x)=sin(2x+$\frac{π}{2}$) | C. | f(x)=3-x-3x | D. | f(x)=x+tanx |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -7<a<24 | B. | a=7 或 a=24 | C. | a<-7或 a>24 | D. | -24<a<7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2x+y+7=0 | B. | 2x-y+5=0 | C. | x-2y+1=0 | D. | x-2y+5=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com