精英家教网 > 高中数学 > 题目详情
8.已知直线l过点P(2,4),且与圆O:x2+y2=4相切,则直线l的方程为(  )
A.x=2或3x-4y+10=0B.x=2或x+2y-10=0C.y=4或3x-4y+10=0D.y=4或x+2y-10=0

分析 切线的斜率存在时设过点P的圆的切线斜率为k,写出点斜式方程再化为一般式.根据圆心到切线的距离等于圆的半径这一性质,由点到直线的距离公式列出含k的方程,由方程解得k,然后代回所设切线方程即可.切线斜率不存在时,直线方程验证即可.

解答 解:将点P(2,4)代入圆的方程得22+32=13>4,∴点P在圆外,
当过点P的切线斜率存在时,设所求切线的斜率为k,
由点斜式可得切线方程为y-4=k(x-2),即kx-y-2k+4=0,
∴$\frac{|-2k+4|}{\sqrt{1+{k}^{2}}}$=2,解得k=$\frac{3}{4}$.
故所求切线方程为3x-4y+16=0.
当过点P的切线斜率不存在时,方程为x=2,也满足条件.
故所求圆的切线方程为3x-4y+16=0或x=2.
故选A.

点评 本题考查直线与圆的位置关系,考查切线方程.若点在圆外,所求切线有两条,特别注意当直线斜率不存在时的情况,不要漏解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在区间[0,2]上任取两个实数x,y,则x2+y2≤1 的概率为$\frac{π}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中既是奇函数,又在区间[-1,1]上单调递增的是(  )
A.f(x)=x${\;}^{-\frac{1}{2}}$B.f(x)=sin(2x+$\frac{π}{2}$)C.f(x)=3-x-3xD.f(x)=x+tanx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平行四边形ABCD中,E,F分别是CD和BC的中点,若$\overrightarrow{AE}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$(x,y∈R),则2x+y=2;若$\overrightarrow{AC}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{AF}$(λ,μ∈R),则3λ+3μ=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点(3,1)和(-4,6)在直线3x-2y+a=0的两侧,则a的取值范围是(  )
A.-7<a<24B.a=7 或 a=24C.a<-7或 a>24D.-24<a<7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过点(-3,-1)且与直线x-2y+3=0平行的直线方程是(  )
A.2x+y+7=0B.2x-y+5=0C.x-2y+1=0D.x-2y+5=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数给出下列说法,其中正确命题的序号为①②④.
(1)命题“若α=$\frac{13π}{6}$,则cosα=$\frac{\sqrt{3}}{2}$”的逆否命题;
(2)命题p:?x0∈R,使sinx0>1,则¬p:?x∈R,sinx≤1;
(3)“φ=$\frac{π}{2}$+2kπ(k∈Z)”是“函数若y=sin(2x+φ)为偶函数”的充要条件;
(4)命题p:“$?x∈(0,\frac{π}{2})$,使$sinx+cosx=\frac{1}{2}$”,命题q:“在△ABC中,若使sinA>sinB,则A>B”,那么命题 (?p)∧q为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足:a1=2,an+1=$\left\{\begin{array}{l}{\frac{1}{2}{a}_{n},n为偶数}\\{{a}_{n}+1,n为奇数}\end{array}\right.$,若bn=a2n-1-1.
(Ⅰ)求证:数列{bn}是等比数列;
(Ⅱ)若数列{an}的前n项和为Sn,求S2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lg$\frac{1+ax}{1-x}$(a>0)为奇函数,函数g(x)=$\frac{2}{{x}^{2}}$+b(b∈R).
(Ⅰ)求a;
(Ⅱ)若b>1,讨论方徎g(x)=ln|x|实数根的个数;
(Ⅲ)当x∈[$\frac{1}{3}$,$\frac{1}{2}$]时,关于x的不等式f(1-x)≤lgg(x)有解,求b的取值范围.

查看答案和解析>>

同步练习册答案