精英家教网 > 高中数学 > 题目详情

【题目】已知函数 是奇函数,且函数f(x)的图象过点(1,3).
(1)求实数a,b值;
(2)用定义证明函数f(x)在 上单调递增;
(3)求函数[1,+∞)上f(x)的值域.

【答案】
(1)解:∵函数 是奇函数,则f(﹣x)=﹣f(x),

,a≠0,∴﹣x+b=﹣x﹣b,∴b=0.

又函数图象经过点(1,3),∴ ,∵b=0,∴a=2


(2)解:由题意可得

任取 ,并设x1<x2

,∵ 且x1<x2

,1﹣2x1x2<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),

∴f(x)在 上单调递增


(3)解:由(2)知f(x)在 上单调递增,∴f(x)在[1,+∞)上单调递增,

∴f(x)在[1,+∞)上的值域为[f(1),+∞),即[3,+∞)


【解析】(1)根据f(﹣x)=﹣f(x)求得b的值,根据函数图象经过点(1,3),求得a的值.(2)利用函数的单调性的定义证明f(x)在 上单调递增.(3)利用函数的单调性求得函数在[1,+∞)上的值域.
【考点精析】解答此题的关键在于理解函数的值域的相关知识,掌握求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,以及对函数的奇偶性的理解,了解偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若上单调递减,求的取值范围;

(Ⅱ)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1(a>b>0)的左右焦点F1、F2 , 离心率为 ,双曲线方程为 =1(a>0,b>0),直线x=2与双曲线的交点为A、B,且|AB|=
(Ⅰ)求椭圆与双曲线的方程;
(Ⅱ)过点F2的直线l与椭圆交于M、N两点,交双曲线与P、Q两点,当△F1MN(F1为椭圆的左焦点)的内切圆的面积取最大值时,求△F1PQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为备战年瑞典乒乓球世界锦标赛,乒乓球队举行公开选拨赛,甲、乙、丙三名选手入围最终单打比赛名单.现甲、乙、丙三人进行队内单打对抗比赛,每两人比赛一场,共赛三场每场比赛胜者得分,负者得分,在每一场比赛中,甲胜乙的概率为丙胜甲的概率为,乙胜丙的概率为,且各场比赛结果互不影响.若甲获第一名且乙获第三名的概率为.

(Ⅰ)求的值

(Ⅱ)设在该次对抗比赛中,丙得分为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣2x+4y﹣4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=log2(x2﹣4)的定义域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数, 是自然对数的底数).

1)当时,求曲线在点处的切线方程;

(2)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,圆,点为抛物线上的动点, 为坐标原点,线段的中点的轨迹为曲线.

(1)求抛物线的方程;

(2)点是曲线上的点,过点作圆的两条切线,分别与轴交于两点.

面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1 , A1C1的中点,BC=CA=CC1 , 则BM与AN所成角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案