【题目】如图所示,三棱柱的侧面是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合的一个点。
(1)若圆柱的轴截面是正方形,当点C是弧AB的中点时,求异面直线与AB的所成角的大小(结果用反三角函数值表示);
(2)当点C是弧AB的中点时,求四棱锥体积与圆柱体积的比.
科目:高中数学 来源: 题型:
【题目】已知等差数列的前项的和为,公差,若,,成等比数列,;数列满足:对于任意的,等式都成立.
(1)求数列的通项公式;
(2)证明:数列是等比数列;
(3)若数列满足,试问是否存在正整数,(其中),使,,成等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线过点,圆:,直线与圆交于两点.
() 求直线的方程;
()求直线的斜率的取值范围;
(Ⅲ)是否存在过点且垂直平分弦的直线?若存在,求直线斜率的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,四边形是菱形, ,平面平面
在棱上运动.
(1)当在何处时, 平面;
(2)已知为的中点, 与交于点,当平面时,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于的偶数可以表示为两个素数的和”,如.现从不超过的素数中,随机选取两个不同的数(两个数无序).(注:不超过的素数有,,,,,)
(1)列举出满足条件的所有基本事件;
(2)求“选取的两个数之和等于”事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆:,点是圆内一个定点,点是圆上任意一点,线段的垂直平分线和半径相交于点.当点在圆上运动时,点的轨迹为曲线.
(1)求曲线的方程;
(2)设过点的直线与曲线相交于两点(点在两点之间).是否存在直线使得?若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com