(1)若f(x)在区间(0,1]上恒为单调函数,求实数a的取值范围;
(2)当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的范围.
解:f′(x)=2x++2,
(1)若f(x)是(0,1]上的增函数,则f′(x)=2x++2≥0.
在(0,1]上恒成立,即a≥-2x2-2x.
令g(x)=-2x2-2x,x∈(0,1],∴g(x)max=0,∴a≥0.
若f(x)在(0,1]上单调递减,则f′(x)=2x++2≤0.
在x∈(0,1]上恒成立,
即a≤-2x2-2x,x∈(0,1],g(x)=-2x2-2x,当x∈(0,1],g(x)min=-4.∴a≤-4,
∴当f(x)在(0,1]恒为单调函数时,a≥0或a≤-4.
(2)∵f(x)=x2+2x+alnx,由f(2t-1)≥2f(t)-3得
(2t-1)2+2(2t-1)+aln(2t-1)≥2(t2+2t+alnt)-3,
化简为:2(t-1)≥aln.①
∵当t>1时,有t2>2t-1,∴ln>0.
故a≤,②
构造函数m(x)=ln(1+x)-x (x>-1),
m′(x)=-1=,
则m(x)在x=0取得极大值,同时也是最大值,故m(x)≤m(0),
从而ln(1+x)≤x在x>-1时恒成立,故
ln=ln[1+]≤<(t-1)2,③
当t>1时恒成立,而t=1时,③式取得“=”,
∴ln≤(t-1)2,④
当t≥1时恒成立,因此由②③④可知实数a的范围为a≤2.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022
已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.
查看答案和解析>>
科目:高中数学 来源:上海模拟 题型:解答题
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com