精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知ABCD是矩形,EF分别是线段ABBC的中点,ABCD.  (1)证明:PFFD
(2)在PA上找一点G,使得EG∥平面PFD.
(Ⅰ) 见解析  (Ⅱ)  
(1) 证明:连结AF
∵在矩形ABCD中,F是线段BC的中点,∴AFFD.
又∵PA⊥面ABCD,∴PAFD.  ∴平面PAFFD.  ∴PFFD.  ……5分
(2) 过EEHFDADH,则EH∥平面PFD.
再过HHGDPPAG,则HG∥平面PFD.
∴平面EHG∥平面PFD.  ∴EG∥平面PFD.从而满足的点G为所找.……12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为a的正方体ABCD—A1B1C1D1中,M、N分别是AA1、D1C1的中点,过D、M、N三点的平面与正方体的下底面相交于直线l;

(1)画出直线l;
(2)设l∩A1B1=P,求PB1的长;
(3)求D到l的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正四棱柱ABCDA1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点BB1C的垂线交侧棱CC1于点E,交B1C于点F
(1)求证:A1C⊥平面BDE
(2)求A1B与平面BDE所成角的正弦值。
(3)设F是CC1上的动点(不包括端点C),求证:△DBF是锐角三角形。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

图4,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,

∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点.
(1)证明:EF∥面PAD;
(2)证明:面PDC⊥面PAD.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP,现将沿折线CD折成60°的二面角P—CD—A,设E,F,G分别是PD,PC,BC的中点。
(I)求证:PA//平面EFG;
(II)若M为线段CD上的一个动点,问当M在什么位置时,MF与平面EFG所成角最大。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。
(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)是否不论点E在何位置,都有BD⊥AE?证明你的结论;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,正方体的棱长为2EAB的中点.(Ⅰ)求证:(Ⅱ)求异面直线BD1CE所成角的余弦值;(Ⅲ)求点B到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平行六面体ABCD-A'B'C'D'中,AC=2,BC=AA'=A'C=2,∠ABC=90°,点O是点A'在底面ABCD上的射影,且点O恰好落在AC上.

(1)求侧棱AA'与底面ABCD所成角的大小;
(2)求侧面A'ADD'底面ABCD所成二面角的正切值;
(3)求四棱锥C-A'ADD'的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直四棱柱中,底面ABCD为等腰梯形,AB∥CD,AB="4,BC=CD=2," AA="2, " E、E、F分别是棱AD、AA、AB的中点。               
(Ⅰ)证明:直线∥平面;          
(Ⅱ)求二面角的余弦值

查看答案和解析>>

同步练习册答案