精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)讨论的单调性;

2)若,方程有两个不同的实数解,求实数的取值范围.

【答案】1上单调递减,在上单调递增.(2

【解析】

1)求出函数定义域和导函数,令导数为零,找出临界值,根据导数的正负,判断函数的单调性即可;

2)分离参数,构造函数,利用导数研究该函数的值域以及单调性,从而解决问题.

1)依题意函数的定义域为

,则 ,故单调递增,

,所以当时,

时,,即

上单调递减,在上单调递增.

2)方程化简可得

所以方程有两解等价于方程有两解,

,则

,由于

所以单调递减,

,所以当时,

时,,即

上单调递增,在上单调递减.

所以时取得最大值

所以存在,使得

上单调递增,所以当时,

时,,即.

因为上单调递减,

且当时,.

所以方程有两解只须满足

解得:

所以方程有两个不同的实数解时,

实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018湖南(长郡中学、株洲市第二中学)、江西(九江一中)等十四校高三第一次联考已知函数(其中为常数, 为自然对数的底数, ).

)若函数的极值点只有一个,求实数的取值范围;

)当时,若(其中)恒成立,求的最小值的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为200的调查样本,其中城镇户籍与农村户籍各100人;男性120人,女性80人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图,如图所示,其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )

A. 是否倾向选择生育二胎与户籍有关

B. 是否倾向选择生育二胎与性别有关

C. 倾向选择生育二胎的人群中,男性人数与女性人数相同

D. 倾向选择不生育二胎的人群中,农村户籍人数少于城镇户籍人数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为,直线l过点且与x轴不重合,l交圆CD两点,过的平行线,交于点E.设点E的轨迹为.

1)求的方程;

2)直线相切于点M与两坐标轴的交点为AB,直线经过点M且与垂直,的另一个交点为N,当取得最小值时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若的值域为,求的值;

(Ⅱ)巳,是否存在这祥的实数,使函数在区间内有且只有一个零点.若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是平行四边形,平面平面.

1)若点的中点,求证:平面

2)在线段上确定点的位置,使得二面角的余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,其前项和为,满足,其中.

⑴若),求证:数列是等比数列;

⑵若数列是等比数列,求的值;

⑶若,且,求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

Ⅰ)由折线图看出,可用线性回归模型拟合yt的关系,请用相关系数加以说明;

Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.

附注:

参考数据:

≈2.646.

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象中两相邻的最高点和最低点分别为,则函数的单调递增区间为________ ,将函数的图象至少平移 ______个单位长度后关于直线对称.

查看答案和解析>>

同步练习册答案