【题目】函数.
(1)求函数的最大值;
(2)对于任意,且,是否存在实数,使恒
成立,若存在求出的范围,若不存在,说明理由;
(3)若正项数列满足,且数列的前项和为,试判断与
的大小,并加以证明.
【答案】(1);(2);(3) .
【解析】
试题分析:(1)求出函数的定义域、导数,由导数的符号可知函数的单调性,根据单调性即可得到函数的最大值;(2)恒成立,只需,可设,又,则只需在上为单调递减函数,从而有在上恒成立,分量参数后化为函数的最值,利用导数求解最值即可;(3)由,得,知数列为等差数列,得,比较与大小,只需比较与的大小,由(1)知,,即,分别令,可得个不等式,累加可知结论.
试题解析:(1) ,
则,
所以函数单调递减,函数单调递增.
从而
(2)若恒成立,
则,
设函数,又,
则只需函数在上为单调递减函数,
即在上恒成立,
则,
记,则,从而在上单调递减,在单调递增,
故,
则存在,使得不等式恒成立.
(3)由.
即,由,得,
因为,由(1)知时,,
故,
即
科目:高中数学 来源: 题型:
【题目】2016年一交警统计了某段路过往车辆的车速大小与发生的交通事故次数,得到如下表所示的数据:
车速 | |||||
事故次数 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)试根据(2)求出的线性回归方程,预测2017年该路段路况及相关安全设施等不变的情况下,车速达到时,可能发生的交通事故次数.
(参考数据:)
[参考公式:]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知偶函数满足:当时,,,当时,.
()求当时,的表达式.
()若直线与函数的图象恰好有两个公共点,求实数的取值范围.
()试讨论当实数,满足什么条件时,函数有个零点且这个零点从小到大依次成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间满足关系式为大于的常数),现随机抽取6件合格产品,测得数据如下:
对数据作了处理,相关统计量的值如下表:
(1)根据所给数据,求关于的回归方程(提示:由已知, 是的线性关系);
(2)按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品,现从抽取的6件合格产品再任选3件,求恰好取得两件优等品的概率;
(附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为 )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某校高三毕业生报考体育专业学生的体重(单位:千克)情况,将他们的体重数据整理后得到如下频率分布直方图,已知图中从左至右前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(Ⅰ)求该校报考体育专业学生的总人数;
(Ⅱ)已知A, 是该校报考体育专业的两名学生,A的体重小于55千克, 的体重不小于70千克,现从该校报考体育专业的学生中按分层抽样分别抽取体重小于55千克和不小于70千克的学生共6名,然后再从这6人中抽取体重小于55千克学生1人,体重不小于70千克的学生2人组成3人训练组,求A不在训练组且在训练组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)如图所示,已知以点为圆心的圆与直线相切.过点的动直线与圆相交于,两点,是的中点,直线与相交于点.
(1)求圆的方程;
(2)当时,求直线的方程.
(3)是否为定值?如果是,求出其定值;如果不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com