精英家教网 > 高中数学 > 题目详情
已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是(  )
A、AB∥mB、AC⊥m
C、AC⊥βD、AB∥β
考点:空间中直线与平面之间的位置关系
专题:空间位置关系与距离
分析:由题意,画出满足条件的图形,依据面面垂直的性质以及线面平行的性质等知识解答.
解答: 解:如图所示,对于A,AB∥l∥m;A成立;
对于B,AC⊥l,m∥l⇒AC⊥m;B成立;
对于C,虽然AC⊥l,但AC不一定在平面α内,故它可以与平面β相交、平行,故不一定垂直;故不成立.
对于D,AB∥l⇒AB∥β,D成立;
故选C.
点评:本题考查了线面平行、线面垂直的判定定理及应用,本部分内容是立体几何的一个重点,要重点掌握
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=-x0,则称x0是f(x)的一个“次不动点”,也称f(x)在区间D上存在次不动点.若函数f(x)=ax2-3x-a+
5
2
在区间[1,4]上存在次不动点,则实数a的取值范围是(  )
A、(-∞,0)
B、(0,
1
2
C、[
1
2
,+∞)
D、(-∞,
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a 
1
2
+a -
1
2
=3(a>0),求
a
3
2
-a-
3
2
a
1
2
-a-
1
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=2,AC=1,点D为BC中点,
AE
=a
AB
AF
=b
AC
,且a+b=ab,直线EF与直线AD相交于点P,则
AP
2
+
BC
2
AP
BC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某四面体的三视图如图所示,则该四面体的表面积是(  )
A、21B、27C、54D、60

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax2+2x-3+m(a>1)恒过定点(1,10),则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算r:r(xn)=nxn-1,r(c)=0,r(cx)=cr(x)(c为常数),r(x+y)=r(x)+r(y),若3x2•f(x)+x3•r[f(x)]=5x4+2x3-3x2,f(x)为多项式函数,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

五名学生报名参加两项体育比赛,每人限报一项,报名方法的种数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1400°=
 
弧度.

查看答案和解析>>

同步练习册答案