精英家教网 > 高中数学 > 题目详情

【题目】已知函数(其中是实数).

(1)求的单调区间;

(2)若设,且有两个极值点),求取值范围.(其中为自然对数的底数).

【答案】(1)时,的单调递增区间为,无单调递减区间时,的单调递增区间为,单调递减区间为(2).

【解析】

试题分析:(1)求出的定义域为,由此利用导数性质和分类讨论思想能求出的单调区间(2)推导出,令,则恒成立,由此能求出的取值范围.

试题解析:(1)的定义域为

,对称轴

(1)当,即时,

于是,函数的单调递增区间为,无单调递减区间.

(2)当,即时,,则恒成立

于是,的单调递增区间为,无减区间.

,得

时,,当时,

于是,的单调递增区间为,单调递减区间为.综上所述:

时,的单调递增区间为,无单调递减区间.

时,的单调递增区间为,单调递减区间为

(2)由(1)知,若有两个极值点,则,且

,又,解得,于是,

),则恒成立,单调递减,,即,故的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)若函数有两个极值点,且恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有Ⅳ人参加,现将所有参加者按年龄情况分为等七组,其频率分布直方图如图所示,已知这组的参加者是6人.

1)已知这两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中恰有1名数学老师的概率;

2)组织者从这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为,求的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线上有一动点,过点作直线垂直于轴,动点上,且满足为坐标原点),记点的轨迹为曲线.

(1)求曲线的方程;

(2)已知定点为曲线上一点,直线交曲线于另一点,且点在线段上,直线交曲线于另一点,求的内切圆半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设点,定义,其中为坐标原点,对于下列结论:

符合的点的轨迹围成的图形面积为8

设点是直线:上任意一点,则

设点是直线:上任意一点,则使得“最小的点有无数个”的充要条件是

设点是椭圆上任意一点,则

其中正确的结论序号为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数),.

1)若,求的极值;

2)对任意都有成立,求实数的取值范围.

3)对任意证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(第三季)亮点颇多,在“人生自有诗意”的主题下,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《沁园春·长沙》、《蜀道难》、《敕勒歌》、《游子吟》、《关山月》、《清平乐·六盘山》排在后六场,且《蜀道难》排在《游子吟》的前面,《沁园春·长沙》与《清平乐·六盘山》不相邻且均不排在最后,则后六场的排法有__________种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高一年级某个班分成7个小组,利用假期参加社会公益服务活动每个小组必须全员参加,参加活动的次数记录如下:

组别

参加活动次数

3

2

4

3

3

4

2

求该班的7个小组参加社会公益服务活动数的中位数及与平均数v

从这7个小组中随机选出2个小组在全校进行活动汇报,求“选出的2个小组参加社会公益服务活动次数相等”的概率.

小组每组有4名同学,小组有5名同学,记“该班学参加社会公益服务活动的平均次数”为,写出v的大小关系结论不要求证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4 坐标系与参数方程选讲

在直角坐标系中,直线的参数方程为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线极坐标方程为.

(1)求直线的普通方程以及曲线的参数方程;

(2)当时,为曲线上动点,求点到直线距离的最大值.

查看答案和解析>>

同步练习册答案