精英家教网 > 高中数学 > 题目详情

【题目】已知P在椭圆上,是椭圆的两个焦点,的三条边长成等差数列,则椭圆的离心率e =___________.

【答案】

【解析】

先根据椭圆的性质化简条件,得到F1PF2所满足的条件,再根据已知三条边长成等差数列,列等式求解离心率.

由椭圆的性质,可知OF1F2的中点,所以,所以∠F1PF2=90°.设|PF1|=m<|PF2|,则由椭圆的定义,可得|PF2|=2a-|PF1|=2a-m,而|F1F2|=2c.因为△F1PF2的三条边长成等差数列,所以2|PF2|=|PF1|+|F1F2|,即m+2c=2(2a-m),解得m=(4a-2c),即|PF1|=(4a-2c).所以|PF2|=2a-(4a-2c)= (2a+2c).又∠F1PF2=90°,所以|F1F2|2=|PF1|2+|PF2|2,即=(2c)2.整理,得5a2-2ac-7c2=0,解得a=ca=-c(舍去).则e=.故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的三个顶点,其外接圆为圆

(1)若直线过点,且被圆截得的弦长为,求直线的方程;

(2)对于线段(包括端点)上的任意一点,若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,求圆的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲
已知函数f(x)=4﹣|x|﹣|x﹣3|
(Ⅰ)求不等式f(x+ )≥0的解集;
(Ⅱ)若p,q,r为正实数,且 =4,求3p+2q+r的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 (a>0,b>0)的左、右焦点分别为F1、F2 , 过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】非零向量 的夹角为 ,且满足| |=λ| |(λ>0),向量组 由一个 和两个 排列而成,向量组 由两个 和一个 排列而成,若 + + 所有可能值中的最小值为4 2 , 则λ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数λ≥0,设各项均为正数的数列{an}的前n项和为Sn,满足:a1 = 1,

).

(1)若λ = 0,求数列{an}的通项公式;

(2)若对一切恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,过点A(0,-b)和B(a,0)的直线与坐标原点距离为.

(1)求椭圆的方程;

(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆相交于C、D两点,试判断是否存在k值,使以CD为直径的圆过定点E?若存在求出这个k值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线Cy2=1(a>0)与直线lxy=1相交于两个不同的点AB.

(1)求双曲线C的离心率e的取值范围;

(2)设直线ly轴的交点为P,且,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线y=k(x+ )与曲线y= 恰有两个不同交点,记k的所有可能取值构成集合A;P(x,y)是椭圆 上一动点,点P1(x1 , y1)与点P关于直线y=x+l对称,记 的所有可能取值构成集合B,若随机地从集合A,B中分别抽出一个元素λ1 , λ2 , 则λ1>λ2的概率是

查看答案和解析>>

同步练习册答案