精英家教网 > 高中数学 > 题目详情

【题目】一种电子计时器显示时间的方式如图所示,每一个数字都在固定的全等矩形“显示池”中显示,且每个数字都由若干个全等的深色区域“ ”组成.已知在一个显示数字8的显示池中随机取一点,点落在深色区域内的概率为.若在一个显示数字0的显示池中随机取一点,则点落在深色区域的概率为( )

A. B. C. D.

【答案】C

【解析】分析:此题属于几何概型。设一个 面积为1,根据在一个显示数字8的显示池中随机取一点,点落在深色区域内的概率为.可求出一个矩形的面积再由深色区域的面积比矩形的面积可求得结果

详解设一个 面积为1,在一个显示数字8的显示池中7 ”,

故深色区域面积为7,因为点落在深色区域内的概率为,设矩形的面积为

所以在一个显示数字0的显示池中有6 ”,

故深色区域面积为6,

所以若在一个显示数字0的显示池中随机取一点,则点落在深色区域的概率为故选C。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”,则该课程考核“合格”,若甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7,在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响.

(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;

(2)求这三个人该课程考核都合格的概率(结果保留三位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的参数方程为 (θ为参数),直线l的极坐标方程为ρcos=2.

(1)写出曲线C的普通方程和直线l的直角坐标方程;

(2)求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100/平方米,底面的建造成本为160/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).

1)将V表示成r的函数Vr),并求该函数的定义域;

2)讨论函数Vr)的单调性,并确定rh为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在浙江省和青海省各取面积大小一样的AB两块区域,分别调查人均可支配收入.获得数据显示,浙江省的A区域的人均可支配收入为35537元,青海省的B区域的人均可支配收入为24542.

1)能否得到这两块区域的人均可支配收入为(元)?

2)若“A区域为70万人,B区域为30万人,请问这两块区域的人均可支配收入为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面的菱形, .

(1)证明:平面平面.

(2)若,直线与平面所成的角为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{}的前项和为Sn,且Sn=n(n+1)(n∈N*).

(1)若数列满足:,求数列的通项公式;

(2)令,求数列{}的前n项和Tn.

(3) ,(n为正整数),问是否存在非零整数,使得对任意正整数n,都有若存在,求的值,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了鼓励市民节约用电,某市实行“阶梯式”电价,将每户居民的月用电量分为二档,月用电量不超过200度的部分按0.5元/度收费,超过200度的部分按0.8元/度收费.某小区共有居民1000户,为了解居民的用电情况,通过抽样,获得了今年7月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.

(1)求的值;

(2)试估计该小区今年7月份用电量用不超过260元的户数;

(3)估计7月份该市居民用户的平均用电费用(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.

(1)求的普通方程和的直角坐标方程;

(2)若过点的直线交于两点,与交于两点,求的取值范围.

查看答案和解析>>

同步练习册答案