精英家教网 > 高中数学 > 题目详情
20.设集合A={x|x2+2x-3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.

分析 (1)通过解不等式,求出集合A、B,从而求出其并集即可;(2)问题转化为集合B是集合A的真子集,得到关于a的不等式组,解出即可.

解答 解:(1)解不等式x2+2x-3<0,
得-3<x<1,即A=(-3,1),…(2分)
当a=3时,由|x+3|<1,
解得-4<x<-2,即集合B=(-4,-2),…(4分)
所以A∪B=(-4,1);…(6分)
(2)因为p是q成立的必要不充分条件,
所以集合B是集合A的真子集…(8分)
又集合A=(-3,1),B=(-a-1,-a+1),…(10分)
所以$\left\{\begin{array}{l}-a-1≥-3\\-a+1<1\end{array}\right.$或$\left\{\begin{array}{l}-a-1>-3\\-a+1≤1\end{array}\right.$,…(12分)
解得0≤a≤2,
即实数a的取值范围是0≤a≤2…(14分)

点评 本题考查了解不等式问题,考查充分必要条件,考查集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)和g(x)分别是定义在[-10,10]上的奇函数和偶函数,则函数F(x)=f(x)•g(x)的图象关于(  )
A.x轴对称B.y轴对称C.原点对称D.直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若定义在x∈(-∞,0)∪(0,+∞)的偶函数y=f(x)在(-∞,0)上的解析式为$f(x)=ln(-\frac{1}{x})$,则函数y=f(x)的图象在点(2,f(2))处的切线斜率为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=(3a-1)x,当m>n时,f(m)<f(n),则实数a的取值范围是($\frac{1}{3}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数$f(x)=\frac{1}{x}+a$为奇函数,则实数a的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知M={x∈N|$\frac{6}{6-x}$∈N},则集合M的子集的个数是(  )
A.8B.16C.32D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,斜三棱柱ABC-A1B1C1的底面是边长为4的正三角形,D是BC的中点,A1D⊥平面ABC.
(1)求证:BC⊥A1A;
(2)若A1A=6,求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.10名工人某天生产同一零件,生产的件数茎叶图如图所示,若众数为c,则c=(  )
A.12B.14C.15D.17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=$\sqrt{x+3}$+$\frac{1}{lg(x+1)}$的定义域是(  )
A.(-1,0)∪(0,+∞)B.[-3,+∞)C.[-3,-1)∪(-1,+∞)D.(-1,+∞)

查看答案和解析>>

同步练习册答案