精英家教网 > 高中数学 > 题目详情
2.当a>0且a≠1时,指数函数f(x)=ax-1+3的图象一定经过(  )
A.(4,1)B.(1,4)C.(1,3)D.(-1,3)

分析 由x-1=0求得x值,进一步得到此时的函数值得答案.

解答 解:由x-1=0,得x=1,此时f(x)=4,
∴指数函数f(x)=ax-1+3的图象一定经过(1,4).
故选:B.

点评 本题考查指数函数的图象和性质,考查函数图象的平移问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若x>0,y>0,x+4y+2xy=7,则x+2y的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设抛物线y2=4x有内接三角形OAB,其垂心(三条边上的高所在直线的交点)恰为抛物线的焦点,求这个三角形的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数g(x)=$\frac{lnx}{x}$.
(Ⅰ)求函数y=g(x)的图象在x=$\frac{1}{e}$处的切线方程;
(Ⅱ)求y=g(x)的最大值;
(Ⅲ)令f(x)=ax2+bx-x•(g(x))(a,b∈R).若a≥0,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知在△ABC中,内角A,B,C所对的边分别是a,b,c,且c=2,2sinA=$\sqrt{3}$acosC.
(1)求角C的大小;
(2)若2sin2A+sin(2B+C)=sinC,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.计算${∫}_{0}^{2}$($\sqrt{4-{x}^{2}}$+x2)dx的结果是π+$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,M,N分别是AB,PC的中点,若ABCD是平行四边形.
(1)求证:MN∥平面PAD.
(2)若PA=AD=2a,MN与PA所成的角为30°.求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若a=log43,则2a+2-a=$\frac{4\sqrt{3}}{3}$;方程log2(9x-1-5)=log2(3x-1-2)+2的解为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知命题p:?x0∈[0,2],log2(x0+2)<2m;命题q:向量$\overrightarrow a=(1,m)$与向量$\overrightarrow b=(1,-3m)$的夹角为锐角.
(I)若命题q为真命题,求实数m的取值范围;
(II)若(¬p)∧q为真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案