精英家教网 > 高中数学 > 题目详情

【题目】某市旅游管理部门为提升该市26个旅游景点的服务质量,对该市26个旅游景点的交通、安全、环保、卫生、管理五项指标进行评分,每项评分最低分0分,最高分100分,每个景点总分为这五项得分之和,根据考核评分结果,绘制交通得分与安全得分散点图、交通得分与景点总分散点图如下:

请根据图中所提供的信息,完成下列问题:

I)若从交通得分前6名的景点中任取2个,求其安全得分都大于90分的概率;

II)若从景点总分排名前6名的景点中任取3个,记安全得分不大于90分的景点个数为,求随机变量的分布列和数学期望;

III)记该市26个景点的交通平均得分为安全平均得分为,写出的大小关系?(只写出结果)

【答案】I;(II)分布列见解析,期望为;(III

【解析】

I)根据古典概型概率计算公式,计算出所求概率.

II)利用超几何分布的知识求出分布列和数学期望.

III)根据两种得分的数据离散程度进行判断.

I)由图可知,交通得分前名的景点中,安全得分大于分的景点有个,所以从交通得分前名的景点中任取个,求其安全得分都大于分的概率为.

II)结合两个图可知,景点总分排名前的的景点中,安全得分不大于分的景点有个,所以的可能取值为.

.

所以的分布列为:

所以.

III)由图可知,个景点中,交通得分全部在分以上,主要集中在分附近,安全得分主要集中在分附近,且分一下的景点接近一半,故 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥SABC中,SA⊥底面ABCACABSA2ACABDE分别是ACBC的中点,FSE上,且SF2FE.

1)求证:平面SBC⊥平面SAE

2)若GDE中点,求二面角GAFE的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点与直角坐标系的原点重合,极轴与轴的正半轴重合,曲线的极坐标方程是,直线的参数方程是为参数).

1)若是圆上一动点,求点到直线的距离的最小值和最大值;

2)直线关于原点对称,且直线截曲线的弦长等于,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x-1+ (a∈R,e为自然对数的底数).且曲线y=f(x)在点(1,f(1))处的切线平行于x轴.

(1)求a的值;

(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市在开展创建全国文明城市活动中,工作有序扎实,成效显著,尤其是城市环境卫生大为改观,深得市民好评.“创文过程中,某网站推出了关于环境治理和保护问题情况的问卷调查,现从参与问卷调查的人群中随机选出200人,并将这200人按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

1)求出a的值;

2)若已从年龄较小的第12组中用分层抽样的方法抽取5人,现要再从这5人中随机抽取3人进行问卷调查,设第2组抽到人,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家正积极推行垃圾分类工作,教育部办公厅等六部门也发布了《关于在学校推进生活垃圾分类管理工作的通知》.《通知》指出,到2020年底,各学校生活垃圾分类知识普及率要达到100%某市教育主管部门据此做了哪些活动最能促进学生进行垃圾分类的问卷调查(每个受访者只能在问卷的4个活动中选择一个)如图是调查结果的统计图,以下结论正确的是(   )

A.回答该问卷的受访者中,选择的(2)和(3)人数总和比选择(4)的人数多

B.回该问卷的受访者中,选择校园外宣传的人数不是最少的

C.回答该问卷的受访者中,选择(4)的人数比选择(2)的人数可能多30

D.回答该问卷的总人数不可能是1000

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体A-BCD中,已知平面平面BCD为正三角形,为等腰直角三角形,其中C为直角顶点,EF分别为校ACAD的中点.

1)求证:平面BEF

2)求证:平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD是正方形,AE平面ABCDPDAEPDAD2EA2GFH分别为BEBPPC的中点.

1)求证:平面ABE平面GHF

2)求直线GH与平面PBC所成的角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的四个顶点都在球的表面上,平面,则球的半径为______;若的中点,过点作球的截面,则截面面积的最小值是______

查看答案和解析>>

同步练习册答案