分析 根据三视图,可得该三棱锥为如图的三棱锥A-BCD,其中底面△BCD中,CD⊥BC,且侧面ABC与底面ABC互相垂直,分别求出S△ADB,S△ADC,S△CBD,S△ACB,问题得以解决.
解答 解:根据题意,还原出如图的三棱锥A-BCD
底面Rt△BCD中,BC⊥CD,且BC=5,CD=4
侧面△ABC中,高AE⊥BC于E,且AE=4,BE=2,CE=3
侧面△ACD中,AC=$\sqrt{A{E}^{2}+C{E}^{2}}$=5
∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AE⊥BC
∴AE⊥平面BCD,结合CD?平面BCD,得AE⊥CD
∵BC⊥CD,AE∩BC=E
∴CD⊥平面ABC,结合AC?平面ABC,得CD⊥AC
因此,△ADB中,AB=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$,BD=$\sqrt{{5}^{2}+{4}^{2}}$=$\sqrt{41}$,AD=$\sqrt{{5}^{2}+{4}^{2}}$=$\sqrt{41}$,
设△ADB中AB边上的高为h,则h=$\sqrt{41-5}$=6,
由三角形面积公式,得S△ADB=$\frac{1}{2}$×2$\sqrt{5}$×6=6$\sqrt{5}$
又∵S△ACB=×5×4=10,S△ADC=S△CBD=×4×5=10
∴三棱锥的表面积是S表=S△ADB+S△ADC+S△CBD+S△ACB=$30+6\sqrt{5}$
点评 本题给出三棱锥的三视图,求该三棱锥的表面积,着重考查了三视图的理解、线面垂直与面面垂直的判定与性质,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{7}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | m>0 | B. | 0<m<$\frac{3}{2}$ | C. | -1<m<3 | D. | -<m<$\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com