精英家教网 > 高中数学 > 题目详情
11.若三棱锥的三视图如图,则其表面积为30+6$\sqrt{5}$.

分析 根据三视图,可得该三棱锥为如图的三棱锥A-BCD,其中底面△BCD中,CD⊥BC,且侧面ABC与底面ABC互相垂直,分别求出S△ADB,S△ADC,S△CBD,S△ACB,问题得以解决.

解答 解:根据题意,还原出如图的三棱锥A-BCD
底面Rt△BCD中,BC⊥CD,且BC=5,CD=4
侧面△ABC中,高AE⊥BC于E,且AE=4,BE=2,CE=3
侧面△ACD中,AC=$\sqrt{A{E}^{2}+C{E}^{2}}$=5
∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AE⊥BC
∴AE⊥平面BCD,结合CD?平面BCD,得AE⊥CD
∵BC⊥CD,AE∩BC=E
∴CD⊥平面ABC,结合AC?平面ABC,得CD⊥AC
因此,△ADB中,AB=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$,BD=$\sqrt{{5}^{2}+{4}^{2}}$=$\sqrt{41}$,AD=$\sqrt{{5}^{2}+{4}^{2}}$=$\sqrt{41}$,
设△ADB中AB边上的高为h,则h=$\sqrt{41-5}$=6,
由三角形面积公式,得S△ADB=$\frac{1}{2}$×2$\sqrt{5}$×6=6$\sqrt{5}$
又∵S△ACB=×5×4=10,S△ADC=S△CBD=×4×5=10
∴三棱锥的表面积是S=S△ADB+S△ADC+S△CBD+S△ACB=$30+6\sqrt{5}$

点评 本题给出三棱锥的三视图,求该三棱锥的表面积,着重考查了三视图的理解、线面垂直与面面垂直的判定与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知f(x)=cos(x+$\frac{π}{6}$).
(1)f($\frac{5π}{2}$)+f($\frac{11π}{3}$)的值;
(2)若f(x)=$\frac{1}{4}$,求sin($\frac{4π}{3}$-x)+4cos2($\frac{2π}{3}$+x)的值;
(3)若x∈(-$\frac{π}{3}$,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.现有10个数,它们能构成一个以1为首项,-2为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C:(x-1)2+(y-4)2=r2(r>0)
(Ⅰ)若直线x-y+5=0与圆C相交所得弦长为$2\sqrt{2}$,求半径r;
(Ⅱ)已知原点O,点A(2,0),若圆C上存在点P,使得$|PO|=\sqrt{2}|PA|$,求半径r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元,
(1)y(万元)与x(件)的函数关系式为?
(2)该工厂的年产量为多少件时,所得年利润最大,并求出最大值.(年利润=年销售总收入-年总投资)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知奇函数f(x)是定义在(-2,2)上的减函数,若f(m-1)+f(1-2m)>0,则实数m取值范围为(  )
A.m>0B.0<m<$\frac{3}{2}$C.-1<m<3D.-<m<$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.命题p:不等式ax2-2ax+1>0的解集为R,命题q:不等式$\frac{\sqrt{3}}{4}$sinx+$\frac{1}{4}$cosx-a<0恒成立,若“p∧q”为假命题且“p∨q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.己知a>0,b>0,c>1且a+b=1,则($\frac{{a}^{2}+1}{ab}$-2)•c+$\frac{\sqrt{2}}{c-1}$的最小值为$4+2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.AB是过椭圆b2x2+a2y2=a2b2的中心弦,F(c,0)为它的右焦点,则△FAB面积的最大值是bc.

查看答案和解析>>

同步练习册答案