精英家教网 > 高中数学 > 题目详情
若a、b是两条异面直线,c、d是分别与a、b都相交的两条直线,则c、d的位置关系是(  )
分析:根据交点的个数分类讨论,结合空间直线位置关系的判定,可得c、d的位置关系是异面或相交.
解答:解:当c、d分别与a、b都相交,且交点各不相同时,由a、b是两条异面直线可得直线c、d是异面直线;
当c、d经过直线a或直线b上同一点,且与a、b中的另一条相交时,c、d是相交直线.
综上所述,c、d的位置关系是异面或相交.
故选:B.
点评:本题给出两条直线与异面直线a、b都相交,求它们的位置关系,着重考查了空间直线的位置关系及其判断的知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列命题
(1)有2个面是矩形的平行六面体是直四棱柱
(2)一个直角三角形以直角边为轴得到的旋转体必定是圆锥
(3)若一条直线平行于平面内的一条直线,则此直线必平行于该平面
(4)存在两条异面直线a,b,a?α,b?β,a∥β,b∥α
其中正确的序号是:
(2)(4)
(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下面的4个命题:
①若直线l⊥平面α,直线l∥平面β,则平面α⊥平面β;
②有两个侧面都是矩形的棱柱一定是直棱柱;
③过空间任意一点一定可以作一个平面和两条异面直线都平行;
④若平面α和平面β都垂直于平面γ,则平面α和平面β不一定平行.
其中,正确的命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:①在空间中,若OA∥O'A',OB∥O'B',则∠AOB=∠A'O'B';
②直角梯形是平面图形;
③{长方体}⊆{正四棱柱}⊆{直平行六面体}; 
④若a、b是两条异面直线,a?平面α,a∥平面β,b∥平面α,则α∥β;
⑤在四面体P-ABC中,PA⊥BC,PB⊥AC,则点A在面PBC内的射影为△PBC的垂心,其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源:江西省师大附中2012届高三上学期期中考试数学理科试题 题型:013

有下列命题:

①在空间中,若OA∥,OB∥则∠AOB=∠

②直角梯形是平面图形;

③{长方体}{正四棱柱}{直平行六平体};

④若a、b是两条异面直线,a平面α,a∥平面β,b∥平面α,则α∥β;

⑤在四面体P-ABC中,PA⊥BC,PB⊥AC,则点A在面PBC内的射影为△PBC的垂心,其中真命题的个数是

[  ]
A.

1

B.

2

C.

3

D.

4

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

有下列命题:①在空间中,若OA∥O'A',OB∥O'B',则∠AOB=∠A'O'B';
②直角梯形是平面图形;
③{长方体}⊆{正四棱柱}⊆{直平行六面体};
④若a、b是两条异面直线,a?平面α,a∥平面β,b∥平面α,则α∥β;
⑤在四面体P-ABC中,PA⊥BC,PB⊥AC,则点A在面PBC内的射影为△PBC的垂心,其中真命题的个数是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

同步练习册答案