精英家教网 > 高中数学 > 题目详情

【题目】六名同学参加一项比赛,决出第一到第六的名次.三人去询问比赛结果,裁判对说:“你和都不是第一名”;对说:“你不是最差的”;对说:“你比的成绩都好”,据此回答六人的名次有_____________种不同情况.

【答案】

【解析】

根据裁判所说,对的名次分两类:第一类是获最后一名,再考虑前面,最后排剩下3人;第二类是没有获得最后一名,此时可同时考虑获得前5名,根据加法原理即可得到答案.

根据裁判所说,对的名次分两类:

第一类是获最后一名,再考虑,从前5名中选2两个名次给前面有种,

最后排种,根据分步计数原理,共有种;

第二类是没有获得最后一名,此时可同时考虑获得前5名中的3个名次

名次在之前有种,最后排种,根据分步计数原理,

共有种;

根据分类计数原理,六人的名次共有种不同情况.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点在抛物线上,则当点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,甲发球得1分的概率为,乙发球得1分的概率为,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量(千辆/h)与汽车的平均速度之间的函数关系式为:

1)若要求在该段时间内车流量超过2千辆,则汽车在平均速度应在什么范围内?

2)在该时段内,若规定汽车平均速度不得超过,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为为参数).在以坐标原点为极点,轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线的极坐标方程是.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)设点.若直与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点在以为焦点的椭圆上.

(1)求椭圆的方程;

(2)经过作直线于两点,交轴于点,若,且,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是一个“数阵”:

1

1

1

其中每行都是公差不为0等差数列,每列都是等比数列,表示位于第i行第j列的数.

1)写出的值:

2)写出的计算公式,以及第20201所在“数阵”中所在的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5)[0.5,1)[4,4.5]分成9组,制成了如图所示的频率分布直方图.

)求直方图中a的值;

)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:annN*).若正整数kk≥5)使得a12+a22+…+ak2a1a2ak成立,则k=(

A.16B.17C.18D.19

查看答案和解析>>

同步练习册答案