精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,点到两点的距离之和为4,设点的轨迹为,直线交于两点。

(Ⅰ)写出的方程;

(Ⅱ)若,求的值。

【答案】)设Pxy),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴,故曲线C的方程为

)设,其坐标满足

消去y并整理得,故

,即.而

于是,化简得,所以

【解析】

试题(1)根据椭圆的定义,可判断点的轨迹为椭圆,再根据椭圆的基本量,容易写出椭圆的方程,求曲线的方程一般可设动点坐标为,然后去探求动点坐标满足的方程,但如果根据特殊曲线的定义,先行判断出曲线的形状(如椭圆,圆,抛物线等),则可直接写出其方程;(2)一般地,涉及直线与二次曲线相交的问题,则可联立方程组,或解出交点坐标,或设而不求,利用一元二次方程根与系数的关系建立关系求出参数的值(取值范围),本题可设,根据,及满足椭圆的方程,利用一元二次方程根与系数的关系消去坐标即得.

试题解析:(1),由椭圆定义可知,的轨迹是以为焦点,

长半轴为2的椭圆, 2

它的短半轴, 4

故曲线的方程为. 6

(2)证明:,其坐标满足消去并整理,

8

. 10

,而

于是

解得13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题共13分)

已知1 ,对于表示UV中相对应的元素不同的个数.

)令,存在m,使得,写出m的值;

)令,若,求证:

)令,若,求所有之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 ,动点分别在直线 上移动, 是线段的中点.

(1)求点的轨迹的方程;

(2)设不经过坐标原点且斜率为的直线交轨迹于点,点满足,若点在轨迹上,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以平面直角坐标系的原点为极点, 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为为参数),圆的极坐标方程为.

1求直线的普通方程与圆的直角坐标方程

2设曲线与直线交于两点,若点的直角坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】省环保厅对三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:

优(个)

28

良(个)

32

30

已知在这180个数据中随机抽取一个,恰好抽到记录城市空气质量为优的数据的概率为0.2.

(1)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在城中应抽取的数据的个数;

(2)已知 ,求在城中空气质量为优的天数大于空气质量为良的天数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分14分)如图,在四棱锥中, 平面,底面是菱形, 的交点, 上任意一点.

1)证明:平面平面

2)若平面,并且二面角的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市在经济高速发展的同时,根据中央文明委办公室2017年度颁布的《全国文明城市(地级以上)测评体系》标准,特制了创建全国文明城市三年行动计划(2018-2020年).在城市环境卫生的治理方面,经过两年的治理,市容市貌焕然一新,为了调查市民对城区环境卫生的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如图所示的频率分布直方图,其中.

1)求被调查市民满意程度的平均数与中位数(精确到小数点后三位);

2)若按照分层抽样的方式从中随机抽取6人,再从这6人中随机抽取2人,求至少有1人的分数在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,有一质点A处以速度v开始沿直线运动,经椭圆内壁反射无论经过几次反射速率始终保持不变,若质点第一次回到时,它所用的最长时间是最短时间的7倍,则椭圆的离心率e  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论正确的是(

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上

B.互联网行业中从事技术岗位的人数超过总人数的20%

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

同步练习册答案