(本小题满分12分)
已知函数f(x)=x3+ax2+ax-2(a∈R),
(1)若函数f(x)在区间(-∞,+∞)上为单调增函数,求实数a的取值范围;
(2)设A(x1,f(x1))、B(x2,f(x2))是函数f(x)的两个极值点,若直线AB的斜率不小于-,求实数a的取值范围.
解:(1)因为函数f(x)在(-∞,+∞)上为单调递增函数,
所以f′(x)=x2+ax+a>0在(-∞,+∞)上恒成立.
由Δ=a2-4a<0,解得0<a<4. 4分
又当a=0时,f(x)=x3-2在(-∞,+∞)上为单调递增函数;
当a=4时,f(x)=x3+2x2+4x-2=(x+2)3-在(-∞,+∞)上为单调递增函数,
所以0≤a≤4. 6分(12分文)
(2)依题意,方程f′(x)=0有两个不同的实数根x1、x2,
由Δ=a2-4a>0,解得a<0或a>4,且x1+x2=-a,x1x2=a. 8分
所以f(x1)-f(x2)=[(x12+x1x2+x22)+a(x1+x2)+a](x1-x2).
所以=[(x1+x2)2-x1x2]+a(x1+x2)+a=(a2-a)+a(-a)+a=-a2+a≥-.
解之,得-1≤a≤5.
所以实数a的取值范围是-1≤a<0或4<a≤5. 12分
【解析】略
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com