【题目】已知数列{an}的前n项和为Sn , 且满足Sn=2an+n(n∈N*).
(1)求证数列{an﹣1}是等比数列,并求数列{an}的通项公式;
(2)若bn=log2(﹣an+1),求数列{ }的前n项和Tn .
【答案】
(1)解:∵Sn=2an+n(n∈N+)
∴Sn﹣1=2an﹣1+n﹣1(n≥2)
两式相减得:an=2an﹣1﹣1,
变形可得:an﹣1=2(an﹣1﹣1),
又∵a1=2a1+1,即a1﹣1=﹣1﹣2=﹣2,
∴数列{an﹣1}是首项为﹣2、公比为2的等比数列,
∴数列an﹣1=﹣22n﹣1=﹣2n,an=﹣2n+1
(2)解:∵bn=log2(﹣an+1)=log22n=n.
∴ =
∴Tn=
=
= ﹣
【解析】(1)通过Sn=2an+n(n∈N+)与Sn﹣1=2an﹣1+n﹣1(n≥2)作差、变形可知an﹣1=2(an﹣1﹣1),进而计算即得结论.(2)由bn=log2(﹣an+1)=log22n=n.得 = ,累加即可求解.
【考点精析】掌握等比数列的通项公式(及其变式)和数列的前n项和是解答本题的根本,需要知道通项公式:;数列{an}的前n项和sn与通项an的关系.
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的通项公式为an=2n﹣1(n∈N*),且a2 , a5分别是等比数列{bn}的第二项和第三项,设数列{cn}满足cn= ,{cn}的前n项和为Sn
(1)求数列{bn}的通项公式;
(2)是否存在m∈N* , 使得Sm=2017,并说明理由
(3)求Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn . 若对任意正整数n,总存在正整数m,使得Sn=am , 则称{an}是“H数列”.
(1)若数列{an}的前n项和Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0.若{an}是“H数列”,求d的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P是圆F1:(x﹣1)2+y2=8上任意一点,点F2与点F1关于原点对称,线段PF2的垂直平分线分别与PF1,PF2交于M,N两点.
(1)求点M的轨迹C的方程;
(2)过点G(0, )的动直线l与点的轨迹C交于A,B两点,在y轴上是否存在定点Q,使以AB为直径的圆恒过这个点?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中有这样一则问题:“今有良马与弩马发长安,至齐,齐去长安三千里,良马初日行一百九十三里,日增一十三里;弩马初日行九十七里,日减半里,良马先至齐,复还迎弩马.”则现有如下说法:
①弩马第九日走了九十三里路;
②良马前五日共走了一千零九十五里路;
③良马和弩马相遇时,良马走了二十一日.
则以上说法错误的个数是( )个
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;
(2)求sinB+sinC的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象在处的切线方程为,其中是自然对数的底数.
(1)若对任意的,都有成立,求实数的取值范围;
(2)若函数的两个零点为,试判断的正负,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要得到函数y= cosx的图象,需将函数y= sin(2x+ )的图象上所有的点的变化正确的是( )
A.横坐标缩短到原来的 倍(纵坐标不变),再向左平行移动 个单位长度
B.横坐标缩短到原来的 倍(纵坐标不变),再向右平行移动 个单位长度
C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动 个单位长度
D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动 个单位长度
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com