精英家教网 > 高中数学 > 题目详情

【题目】已知a0,且a≠1.命题P:函数fx)=logax在(0+∞)上为增函数;命题Q:函数gx)=x22ax+4有零点.

1)若命题PQ满足PQ假,求实数a的取值范围;

2)命题S:函数yfgx))在区间[2+∞)上值恒为正数.若命题S为真命题,求实数a的取值范围.

【答案】1)(12);

2)(1).

【解析】

1)根据命题PQ满足PQ假,计算得到答案.

2)首先保证gx)=x22ax+4[2+∞)上恒大于0,再讨论0a11a2两种情况,分别计算得到答案.

1)由命题P:函数fx)=logax在(0+∞)上为增函数是真,得a1

由命题Q:函数gx)=x22ax+4有零点为假,得△=4a2160,得﹣2a2

∴使命题PQ假的实数a的取值范围是(12);

2)若函数yfgx))在区间[2+∞)上值恒为正数,

则首先保证gx)=x22ax+4[2+∞)上恒大于0

则△=4a2160

得﹣2a2.又a0a≠1,∴0a2a≠1

0a1时,外层函数fx)单调递减,而内层函数gx)当x→+∞时,gx→+∞

此时yfgx))<0,不合题意;

1a2时,外层函数fx)单调递增,要使yfgx))>0在区间[2+∞)上恒成立,

gx)=x22ax+4[2+∞)上的最小值大于1

g2)=84a1,得a

1a

即使命题S为真命题的实数a的取值范围是(1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班级期末考试后,对数学成绩在分以上(含分)的学生成绩进行统计,其频率分布直方图如图所示.其中分数段的人数为.

1)根据频率分布直方图,写出该班级学生数学成绩的众数;

2)现根据学生数学成绩从第一组和第四组(从低分段到高分段依次为第一组,第二组,,第五组)中任意选出两人形成学习小组.若选出的两人成绩之差大于分则称这两人为“最佳组合”,试求选出的两人为“最佳组合”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次函数fx)=ax22bx+8

1)设集合P{123}Q{2345},分别从集合PQ中随机取一个数作为ab,求函数yfx)在区间(﹣2]上有零点且为减函数的概率?

2)设集合P[13]Q[25],分别从集合PQ中随机取一个实数作为ab,求函数yfx)在区间(﹣2]上有零点且为减函数的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推动更多人阅读,联合国教科文组织确定每年的4月23日为“世界读书日”设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了200名居民,经统计这200人中通过电子阅读与纸质阅读的人数之比为3:1,将这200人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示,

(1)求a的值及通过电子阅读的居民的平均年鹼;

(2)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中通过纸质阅读的中老年有30人,请完成下面2×2列联表,并判断是否有97.5%的把握认为阅读方式与年齡有关?

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若,且存在不相等的实数,使得,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC为正三角形,且BCCD2CDBC,将△ABC沿BC翻折.

1)当AD2时,求证:平面ABD⊥平面BCD

2)若点A的射影在△BCD内,且直线AB与平面ACD所成角为60°,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1ab0),椭圆C上的点到焦点距离的最大值为9,最小值为1

1)求椭圆C的标准方程;

2)求椭圆C上的点到直线l4x5y+400的最小距离?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了了解学生对消防知识的了解情况,从高一年级和高二年级各选取100名同学进行消防知识竞赛.下图(1)和图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按分组,得到的频率分布直方图.

1)请计算高一年级和高二年级成绩小于60分的人数;

2)完成下面列联表,并回答:有多大的把握可以认为“学生所在的年级与消防常识的了解存在相关性”?

成绩小于60分人数

成绩不小于60分人数

合计

高一

高二

合计

附:临界值表及参考公式:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右顶点分别为,长轴长为4,离心率为.过右焦点的直线交椭圆两点(均不与重合),记直线的斜率分别为.

(Ⅰ)求椭圆的方程;

(Ⅱ)是否存在常数,当直线变动时,总有成立?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案