精英家教网 > 高中数学 > 题目详情
6、设0<a<1,函数f(x)=loga(a2x-2ax-2),则使f(x)<0的x的取值范围是
(-∞,loga3).
分析:令t=ax,有t>0,则y=loga(t2+2t-2),若使f(x)<0,由对数函数的性质,可转化为t2+2t-2>1,解可得t的取值范围,由指数函数的性质,分析可得答案.
解答:解:令t=ax,有t>0,则y=loga(t2-2t-2),
若使f(x)<0,即loga(t2-2t-2)<0,
由对数函数的性质,0<a<1,y=logax是减函数,
故有t2-2t-2>1,
解可得,t>3或t<-1,
又因为t=ax,有t>0,
故其解为t>3,
即ax>3,又有0<a<1,
由指数函数的图象,可得x的取值范围是(-∞,loga3).
故答案为:(-∞,loga3).
点评:本题考查指数、对数函数的运算与性质,解题时,要联想这两种函数的图象,特别是图象上的特殊点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、设0<a<1,函数f(x)=loga(a2x-2ax-2),则使f(x)<0的x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设0<a<1,函数f(x)=loga
x+1x-1

(1)求函数f(x)定义域;
(2)判断f(x)的奇偶性,并证明;
(3)当f(x)>0时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设0<a<1,函数f(x)=loga
x+1
x-1

(1)求函数f(x)定义域;
(2)判断f(x)的奇偶性,并证明;
(3)当f(x)>0时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设0<a<1,函数f(x)=loga(a2x-2ax-2),则使f(x)<0的x的取值范围(    )

A.(-∞,0)                             B.(0,+∞)

C.(-∞,loga3)                      D.(loga3,+∞)

查看答案和解析>>

同步练习册答案