精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx,g(x)=
1
2
x2+mx+
7
2
(m<0),直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象的切点横坐标为1.
(1)求直线l的方程及m的值;
(2)若h(x)=f(x)-g'(x)(其中g'(x)是g(x)的导函数),求h(x)的单调区是及最值.
分析:(1)欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率,最后利用直线方程与曲线方程组成的方程有唯一解求得m.从而问题解决.
(2)令h'(x)=0求出x的值为x=1,分两种情况讨论h'(x)的正负得到函数的单调区间,根据函数的增减性即可得到函数的最小值.
解答:解:(1)由题意可知直线l与函数f(x)=lnx相切于(1,0).∵f′(x)=
1
x

∴切线斜率k=f'(1)=1∴切线l的方程为y=x-1
又∵直线l与g(x)=
1
2
x2+mx+
7
2
(m<0)相切

即方程
1
2
x2+mx+
7
2
=x-1
有一个解.∴△=(m-1)2-4•
1
2
9
2
=0(m<0)
∴m=-2
(2)由(1)可知g(x)=
1
2
x2-2x+
7
2
∴g'(x)=x-2,∴h(x)=lnx-x+2(x>0)∴h′(x)=
1
x
-1

由h'(x)=0,得x=1,h'(x)及h(x)的变化如下表
精英家教网
故h(x)的单调增区间为(0,1),单调减区间为(1,+∞),h(x)max=h(1)=1,无最小值.
点评:考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值.灵活运用分类讨论的数学思想解决数学问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案