精英家教网 > 高中数学 > 题目详情
5.如图,在平行六面体ABCD-A1B1C1D1中,AB=3,AD=4,AA1=4,∠DAB=90°,∠BAA1=∠DAA1=60°,E是CC1的中点,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$.
(1)用$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$表示$\overrightarrow{AE}$;
(2)求|$\overrightarrow{AE}$|.

分析 (1)如图所示,∵$\overrightarrow{BC}=\overrightarrow{AD}$,$\overrightarrow{CE}=\frac{1}{2}\overrightarrow{C{C}_{1}}$=$\frac{1}{2}\overrightarrow{A{A}_{1}}$,利用向量的多边形法则可得$\overrightarrow{AE}$=$\overrightarrow{AB}+\overrightarrow{BC}$+$\overrightarrow{CE}$.
(2)利用向量数量积运算性质可得:$|\overrightarrow{AE}{|}^{2}$=$(\overrightarrow{a}+\overrightarrow{b}+\frac{1}{2}\overrightarrow{c})^{2}$=${\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}$+$\frac{1}{4}{\overrightarrow{c}}^{2}$+$2\overrightarrow{a}•\overrightarrow{b}$+$\overrightarrow{a}•\overrightarrow{c}$+$\overrightarrow{b}•\overrightarrow{c}$,代入即可得出.

解答 解:(1)如图所示,∵$\overrightarrow{BC}=\overrightarrow{AD}$,$\overrightarrow{CE}=\frac{1}{2}\overrightarrow{C{C}_{1}}$=$\frac{1}{2}\overrightarrow{A{A}_{1}}$,
∴$\overrightarrow{AE}$=$\overrightarrow{AB}+\overrightarrow{BC}$+$\overrightarrow{CE}$=$\overrightarrow{a}+\overrightarrow{b}+\frac{1}{2}\overrightarrow{c}$.
(2)∵$|\overrightarrow{AE}{|}^{2}$=$(\overrightarrow{a}+\overrightarrow{b}+\frac{1}{2}\overrightarrow{c})^{2}$=${\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}$+$\frac{1}{4}{\overrightarrow{c}}^{2}$+$2\overrightarrow{a}•\overrightarrow{b}$+$\overrightarrow{a}•\overrightarrow{c}$+$\overrightarrow{b}•\overrightarrow{c}$=${3}^{2}+{4}^{2}+\frac{1}{4}×{4}^{2}$+0+$3×4×\frac{1}{2}$+$4×4×\frac{1}{2}$=43.
∴$|\overrightarrow{AE}|=\sqrt{43}$.

点评 本题考查了向量的多边形法则、向量数量积运算性质,考查了推理能力与计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在函数y=|tanx|,y=|sin(x+$\frac{π}{2}$)|,y=|sin2x|,y=sin(2x+$\frac{3π}{2}$)四个函数中,既是以π为周期的偶函数,又是区间(-$\frac{π}{2}$,0)上的增函数的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求$\frac{cos80°-cos20°}{sin80°+sin20°}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若(x-i)i=y+2i,x,y∈R,则复数x+yi在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}$x2-$\frac{1}{3}$ax3(a>0),函数g(x)=f(x)+ex(x-1),函数g(x)的导函数为g′(x).
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若a=e,
(1)求函数g(x)的单调区间;
(2)求证:x>0时,不等式g′(x)≥1+lnx恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知直线过点P(1,2),其参数方程为$\left\{{\begin{array}{l}{x=1-t}\\{y=2+t}\end{array}}\right.$(t是参数),若直线l与直线2x+y-2=0交于点Q,则|PQ|等于2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设随机变量ξ~B(n,p),且E(ξ)=1.6,D(ξ)=1.28,则n,p的值依次为(  )
A.8,0.2B.4,0.4C.5,0.32D.7,0.45

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在矩形ABCD中,AB=2BC,M、N分别是AB和CD的中点,在以A、B、C、D、M、N为起点和终点的所有向量中,相等的非零向量共有24对.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某班有34位同学,座位号记为01,02,…34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.
49 54 43 54 82 17 37 93 23 78 87 35 20
96 43 84 26 34 91 64 57 24 55 06 88 77
04 74 47 67 21 76 33 50 25 83 92 12 06
选取方法是从随机数表第一行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是 (  )
A.23B.09C.02D.16

查看答案和解析>>

同步练习册答案