精英家教网 > 高中数学 > 题目详情

【题目】十三五规划确定了到2020年消除贫困的宏伟目标,打响了精准扶贫的攻坚战,为完成脱贫任务,某单位在甲地成立了一家医疗器械公司吸纳附近贫困村民就工,已知该公司生产某种型号医疗器械的月固定成本为20万元,每生产1千件需另投入5.4万元,设该公司一月内生产该型号医疗器械x千件且能全部销售完,每千件的销售收入为万元,已知

1)请写出月利润y(万元)关于月产量x(千件)的函数解析式;

2)月产量为多少千件时,该公司在这一型号医疗器械的生产中所获月利润最大?并求出最大月利润(精确到0.1万元).

【答案】12)当月产量为8千件时,该公司在这一型号医疗器械的生产中所获月利润最大,最大月利润为14.1万元.

【解析】

1)分别求出两种情况所对应的利润即可;

2)利用导数及基本不等式求出(1)中分段函数的最大值即可.

解:(1)当时,

时,

2)①当时,

,可得时,时,

时,(万元);

②当时,(万元)(当且仅当时取等号).

综合①②知,当时,y取最大值14.1,故当月产量为8千件时,该公司在这一型号医疗器械的生产中所获月利润最大,最大月利润为14.1万元.

【点晴】

本题主要考查函数模型的应用,考查学生数学建模能力,数学运算能力,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数,).

(1)若求函数的单调区间

(2)证明:当函数有两个零点,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,的中点,点在平面内的射影在线段上.

(1)求证:

(2)若是正三角形,求三棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设,且,记;

(1)设,其中,试求的单调区间;

(2)试判断弦的斜率的大小关系,并证明;

(3)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求函数的单调递减区间;

2)若关于的不等式恒成立,求整数的最小值;

3)若,正实数满足,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数a为常数,且)在处取得极值.

1)求实数a的值,并求的单调区间;

2)关于x的方程上恰有1个实数根,求实数b的取值范围;

3)求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】法国有个名人叫做布莱尔·帕斯卡,他认识两个赌徒,这两个赌徒向他提出一个问题,他们说,他们下赌金之后,约定谁先赢满5局,谁就获得全部赌金700法郎,赌了半天,甲赢了4局,乙赢了3局,时间很晚了,他们都不想再赌下去了.假设每局两赌徒输赢的概率各占,每局输赢相互独立,那么这700法郎如何分配比较合理(

A.400法郎,乙300法郎B.500法郎,乙200法郎

C.525法郎,乙175法郎D.350法郎,乙350法郎

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元2020年春,我国湖北武汉出现了新型冠状病毒,人感染后会出现发热、咳嗽、气促和呼吸困难等,严重的可导致肺炎甚至危及生命.为了尽快遏制住病毒的传播,我国科研人员,在研究新型冠状病毒某种疫苗的过程中,利用小白鼠进行科学试验.为了研究小白鼠连续接种疫苗后出现症状的情况,决定对小白鼠进行做接种试验.该试验的设计为:①对参加试验的每只小白鼠每天接种一次;②连续接种三天为一个接种周期;③试验共进行3个周期.已知每只小白鼠接种后当天出现症状的概率均为,假设每次接种后当天是否出现症状与上次接种无关.

1)若某只小白鼠出现症状即对其终止试验,求一只小白鼠至多能参加一个接种周期试验的概率;

2)若某只小白鼠在一个接种周期内出现2次或3症状,则在这个接种周期结束后,对其终止试验.设一只小白鼠参加的接种周期为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,椭圆的一个顶点为,右焦点到直线的距离为.

(1)求椭圆的标准方程;

(2)若过作两条互相垂直的直线,且交椭圆两点,交椭圆两点,求四边形的面积的取值范围.

查看答案和解析>>

同步练习册答案