精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,圆,圆.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求圆的极坐标方程;

(2)设分别为上的点,若为等边三角形,求.

【答案】(1)C1:ρ=2cosθ;C2:ρ=-4cosθ(2)

【解析】

1)由直角坐标方程与极坐标方程的互化即可求解;(2)设A(ρAθ)B(ρBθ)0θ,由ρA2cosθ=ρB=-4cos(θ),得tanθ,则可求ρA

1)依题意可得,圆C1(x1)2y21;圆C2(x2)2y24

所以C1x2y22xC2x2y2=-4x

因为x2y2ρ2xρcosθ

所以C1ρ2cosθC2ρ=-4cosθ

2)因为C1C2都关于x轴对称,△OAB为等边三角形,

所以不妨设A(ρAθ)B(ρBθ)0θ

依题意可得,ρA2cosθρB=-4cos(θ)

从而2cosθ=-4cos(θ)

整理得,2cosθsinθ,所以tanθ

又因为0θ,所以cosθ

|AB||OA|ρA

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x2+2alnx.

(1)若函数fx)的图象在(2f2))处的切线斜率为1,求实数a的值;

(2)若函数[12]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为为参数).以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)设动直线分别与曲线相交于点,求当为何值时,取最大值,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,将椭圆上每一点的横坐标保持不变,纵坐标变为原来的一半,得曲线C,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为

写出曲线C的普通方程和直线l的直角坐标方程;

已知点且直线l与曲线C交于AB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的个数是( )

1)在频率分布直方图中,中位数左边和右边的直方图的面积相等.

2)如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变.

3)一个样本的方差s2=[x32+X—32+ +X32],则这组数据总和等于60.

4)数据的方差为,则数据的方差为.

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线C左、右焦点分别为,左、右顶点分别为B为虚轴的上顶点,若直线上存在两点使得,且过双曲线的右焦点作斜率为1的直线与双曲线的左、右两支各有一个交点,则双曲线离心率的范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与平面相交但不垂直,则下列说法中正确的是( )

A.在平面内没有直线与直线垂直;

B.在平面内有且只有一条直线与直线垂直;

C.在平面内有无数条直线与直线垂直;

D.在平面内存在两条相交直线与直线垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形是矩形,平面分别是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求平面与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列四个命题:①直线在平面内,又在平面内,则重合;②直线相交,直线相交,直线相交,则直线共面;③线共面,直线共面,则直线也共面;④线不在平面内,则直线与平面内任何一点都可唯一确定一个平面;其中假命题是______.(写出所有假命题的序号)

查看答案和解析>>

同步练习册答案