【题目】已知曲线C的极坐标方程是ρ2=4ρcosθ+6ρsinθ﹣12,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为 (t为参数).
(I)写出直线l的一般方程与曲线C的直角坐标方程,并判断它们的位置关系;
(II)将曲线C向左平移2个单位长度,向上平移3个单位长度,得到曲线D,设曲线D经过伸缩变换 得到曲线E,设曲线E上任一点为M(x,y),求 的取值范围.
【答案】解:(I)∵直线l的参数方程为 (t为参数).
∴消去数t,得直线l的一般方程为 ,
∵曲线C的极坐标方程是ρ2=4ρcosθ+6ρsinθ﹣12,
∴由ρcosθ=x,ρsinθ=y,ρ2=x2+y2,
得曲线C的直角坐标方程为(x﹣2)2+(y﹣3)2=1.
∵圆心(2,3)到直线l的距离d= =r,
∴直线l和曲线C相切.
(II)曲线D为x2+y2=1.
曲线D经过伸缩变换 ,得到曲线E的方程为 ,
则点M的参数方程为 (θ为参数),
∴ ,
∴ 的取值范围为[﹣2,2].
【解析】(I)直线l的参数方程消去数t,能求出直线l的一般方程,由ρcosθ=x,ρsinθ=y,ρ2=x2+y2,能求出曲线C的直角坐标方程,由圆心(2,3)到直线l的距离d=r,得到直线l和曲线C相切.(II)曲线D为x2+y2=1.曲线D经过伸缩变换 ,得到曲线E的方程为 ,从而点M的参数方程为 (θ为参数),由此能求出 的取值范围.
科目:高中数学 来源: 题型:
【题目】品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分. 现设n=4,分别以a1 , a2 , a3 , a4表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令X=|1﹣a1|+|2﹣a2|+|3﹣a3|+|4﹣a4|,
则X是对两次排序的偏离程度的一种描述.
(Ⅰ)写出X的可能值集合;
(Ⅱ)假设a1 , a2 , a3 , a4等可能地为1,2,3,4的各种排列,求X的分布列;
(Ⅲ)某品酒师在相继进行的三轮测试中,都有X≤2,
①试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);②你认为该品酒师的酒味鉴别功能如何?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂每日生产一种大型产品2件,每件产品的投入成本为1000元.产品质量为一等品的概率为0.5,二等品的概率为0.4,每件一等品的出厂价为5000元,每件二等品的出厂价为4000元,若产品质量不能达到一等品或二等品,除成本不能收回外,每生产1件产品还会带来1000元的损失.
(Ⅰ)求在连续生产的3天中,恰有两天生产的2件产品都为一等品的概率;
(Ⅱ)已知该厂某日生产的这种大型产品2件中有1件为一等品,求另1件也为一等品的概率;
(Ⅲ)求该厂每日生产这种产品所获利润ξ(元)的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2α﹣2cosα=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的公差为2,前n项和为Sn , 且S1 , S2 , S4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=(﹣1)n﹣1 ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}的前n项和为Sn , Sn=(2n﹣1)an , 且a1=1.
(1)求数列{an}的通项公式;
(2)若bn=nan , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】程序框图如图:如果上述程序运行的结果S的值比2016小,若使输出的S最大,那么判断框中应填入( )
A.k≤10?
B.k≥10?
C.k≤9?
D.k≥9?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】折纸已经成为开发少年儿童智力的一大重要工具和手段.已知在折叠“爱心”的过程中会产生如图所示的几何图形,其中四边形ABCD为正方形,G为线段BC的中点,四边形AEFG与四边形DGHI也为正方形,连接EB,CI,则向多边形AEFGHID中投掷一点,该点落在阴影部分内的概率为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图.设椭圆C: (a>b>0)的离心率e= ,椭圆C上一点M到左、右两个焦点F1、F2的距离之和是4.
(1)求椭圆C的方程;
(2)直线l:x=1与椭圆C交于P、Q两点,P点位于第一象限,A、B是椭圆上位于直线l两侧的动点,若直线AB的斜率为 ,求四边形APBQ面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com