分析 通过裂项可知$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),进而并项相加即得结论.
解答 解:∵$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴$\frac{1}{n(n+2)}$+$\frac{1}{(n+2)(n+4)}$+$\frac{1}{(n+4)(n+6)}$+…+$\frac{1}{(n+10)(n+12)}$
=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$+$\frac{1}{n+2}$-$\frac{1}{n+4}$+…+$\frac{1}{n+10}$-$\frac{1}{n+12}$)
=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+12}$)
=$\frac{6}{n(n+12)}$,
故答案为:$\frac{6}{n(n+12)}$.
点评 本题考查数列的通项,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | [6,+∞) | B. | [3+2$\sqrt{2}$,+∞) | C. | (0,3+2$\sqrt{2}$] | D. | [3+$\sqrt{2}$,6) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com