精英家教网 > 高中数学 > 题目详情
已知函数f(x)对任意x,y∈R,满足条件f(x)+f(y)=2+f(x+y),且f(3)=5,
(1)求f(1)+f(-1)的值;
(2)若f(x)为R上的增函数,证明:存在唯一的实数,使得对任意x∈(0,1),都有f(x2+2t2x)<3成立.
分析:(1)由f(3)=f(2+1)=f(2)+f(1)-2=[f(1)+f(1)-2]+f(1)-2=3f(1)-4=5解得f(1)=3.f(2)=4.再由f(2)=f[3+(-1)]=f(3)+f(-1)-2=5+f(-1)-2=4.解得f(-1)=1.由此能求出f(1)+f(-1).
(2)f(x)为R上的增函数,且对任意x∈(0,1),都有f(x2+2t2x)<3=f(1),等价于对任意x∈(0,1),都有x2+2t2x<1,构造函数y=x2+2t2x,利用导数能够进行证明.
解答:(1)解:∵f(x)对任意x,y∈R,满足条件f(x)+f(y)=2+f(x+y),且f(3)=5,
∴f(3)=f(2+1)=f(2)+f(1)-2=[f(1)+f(1)-2]+f(1)-2=3f(1)-4=5
解得f(1)=3.
∵f(3)=f(2+1)=f(2)+f(1)-2=f(2)+3-2=5,
∴f(2)=4.
∵f(2)=f[3+(-1)]=f(3)+f(-1)-2=5+f(-1)-2=4.
∴f(-1)=1.
∴f(1)+f(-1)=4.
(2)证明:∵f(x)为R上的增函数,且对任意x∈(0,1),都有f(x2+2t2x)<3=f(1),
∴对任意x∈(0,1),都有x2+2t2x<1,
设y=x2+2t2x,
则y′=2x+2t2
∵x∈(0,1),∴y′=2x+2t2>0,
∴y=x2+2t2x在(0,1)内是增函数,
∴y=x2+2t2x的值域为(0,1+2t2),
∵对任意x∈(0,1),都有x2+2t2x<1,
∴1+2t2≤1,解得t=0.
∴存在唯一的实数t=0,使得对任意x∈(0,1),都有f(x2+2t2x)<3成立.
点评:本题考查抽象函数及其应用,以及利用函数单调性的定义判断函数的单调性,并根据函数的单调性解函数值不等式,体现了转化的思想,在转化过程中一定注意函数的定义域.解决抽象函数的问题一般应用赋值法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex,直线l的方程为y=kx+b.
(1)求过函数图象上的任一点P(t,f(t))的切线方程;
(2)若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;
(3)若f(x)≥kx+b对任意x∈[0,+∞)成立,求实数k、b应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.
(1)若x2-1比1远离0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab
ab

(3)已知函数f(x)的定义域D={{x|x≠
2
+
π
4
,k∈Z,x∈R}
.任取x∈D,f(x)等于sinx和cosx中远离0的那个值.写出函数f(x)的解析式,并指出它的基本性质(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y、m满足|x-m|<|y-m|,则称x比y接近m.
(1)若x2-1比3接近0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a2b+ab2比a3+b3接近2ab
ab

(3)已知函数f(x)的定义域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那个值.写出函数f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex
ex+1

(Ⅰ)证明函数y=f(x)的图象关于点(0,
1
2
)对称;
(Ⅱ)设y=f-1(x)为y=f(x)的反函数,令g(x)=f-1(
x+1
x+2
),是否存在实数b
,使得任给a∈[
1
4
1
3
],对任意x∈(0,+∞).不等式g(x)>x-ax2
+b恒成立?若存在,求b的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)已知函数f(x)=
1,x∈Q
0,x∈CRQ
,则f(f(x))=
1
1

下面三个命题中,所有真命题的序号是
①②③
①②③

①函数f(x)是偶函数;
②任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立;
③存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.

查看答案和解析>>

同步练习册答案