精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=lg(-x2+4x-3)的定义域为M.
(1)求f(x)的定义域M;
(2)求当x∈M时,求函数g(x)=4x-a•2x+1(a为常数,且a∈R)的值域.

分析 (1)根据对数函数的真数大于0,列出不等式求出解集即可;
(2)由x∈M时,求出2x的取值范围,由此讨论a的取值,从而求出g(x)的值域即可.

解答 解:(1)∵函数f(x)=lg(-x2+4x-3),
∴-x2+4x-3>0,
即(x-1)(x-3)<0,
解得1<x<3,
∴f(x)的定义域M=(1,3);
(2)当x∈M时,即x∈(1,3),∴2x∈(2,8);
∴函数g(x)=4x-a•2x+1=(2x2-2a•2x=(2x-a)2-a2
当a≤2时,g(x)在x∈(1,3)上是增函数,
∴g(x)的最小值是g(1)=4-4a,最大值是g(3)=64-16a,
g(x)的值域是[4-4a,64-16a];
当2<a≤5时,g(x)在x∈(1,3)上先减后增,
∴g(x)的最小值是-a2,最大值是g(3)=64-16a,
g(x)的值域是[-a2,64-16a];
当5<a<8时,g(x)在x∈(1,3)上先减后增,
∴g(x)的最小值是-a2,最大值是g(1)=4-4a,
g(x)的值域是[-a2,4-4a];
当a≥8时,g(x)在x∈(1,3)上是减函数,
∴g(x)的最小值是g(3)=64-16a,最大值是g(1)=4-4a,
g(x)的值域是[64-16a,4-4a];
综上,a≤2时,g(x)的值域是[4-4a,64-16a],
2<a≤5时,g(x)的值域是[-a2,64-16a],
5<a<8时,g(x)的值域是[-a2,4-4a],
a≥8时,g(x)的值域是[64-16a,4-4a].

点评 本题考查了求函数的定义域和值域的应用问题,也考查了分类讨论思想的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.如图所示是某一几何体的三视图,则这个几何体是(  )
A.圆柱体B.圆锥体C.正方体D.球体

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}的通项为an=2n(n∈N*),把数列{an}的各项排列成如图所示的三角形数阵:

记M(s,t)表示该数阵中第s行的第t个数,则M(10,12)对应的数是293

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\frac{|x+1|-|x-1|}{2}$,函数g(x)=ax2-2x+1.若函数y=f(x)-g(x)恰好有2个不同的零点,则实数a的取值范围为(-∞,0)∪(0,$\frac{9}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知正四棱台ABCD-A1B1C1D1的高为2,A1B1=1,AB=2,则该四棱台的侧面积等于3$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下面四个图象中,有一个是函数f(x)=$\frac{1}{3}$x3+ax2+(a2-1)x+1(a∈R)的导函数y=f′(x)的图象,则f(-1)=(  )
A.$\frac{5}{3}$或$-\frac{1}{3}$B.$\frac{5}{3}$或$\frac{1}{3}$C.$-\frac{1}{3}$或$-\frac{5}{3}$D.$\frac{1}{3}$或$-\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.计算:
(1)计算27${\;}^{\frac{2}{3}}$-2${\;}^{lo{g}_{2}3}$×log2$\frac{1}{8}$+log23×log34;
(2)已知0<x<1,x+x-1=3,求x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知倾斜角为α的直线l与直线x+2y-3=0垂直,则cos($\frac{2015π}{2}$-2α)的值为(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=f(x)的定义域是(-1,1),则函数f(2x-1)的定义域为(  )
A.(0,1)B.(-1,1)C.(-3,1)D.(-1,0)

查看答案和解析>>

同步练习册答案