精英家教网 > 高中数学 > 题目详情

【题目】某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:

广告支出x(单位:万元)

1

2

3

4

销售收入y(单位:万元)

12

28

42

56

(1)画出表中数据的散点图;

(2)求出yx的回归直线方程

(3)若广告费为9万元,则销售收入约为多少万元?

参考公式:

【答案】1)散点图见解析;(2;(31294万元

【解析】

试题(1)根据给出数据做出散点图;(2)由散点图可知之间具有线性相关关系,先求出,代入公式求出,得到回归直线方程;(3)把代入回归直线方程,求出即为销售收入;

试题解析:(1)散点图为

2)由散点图可知之间具有线性相关关系.由题意知

回归直线方程为

3)将代入,得,故投入9万元广告费,销售收入约为1294万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且a2=2,a4=
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数x(个)

2

3

4

5

加工的时间y(小时)

2.5

3

4

4.5

(1)在给定的坐标系中画出表中数据的散点图;

(2)求出y关于x的线性回归方程

(3)试预测加工10个零件需要多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.

(1)求第二小组的频率,并补全这个频率分布直方图;

(2)求这两个班参赛的学生人数是多少?

(3)求这两个班参赛学生的成绩的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.

1)求所取3张卡片上的数字完全相同的概率;

2表示所取3张卡片上的数字的中位数,求的分布列与数学期望.

(注:若三个数满足,则称为这三个数的中位数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在一个周期内的图像如图所示.

(I)求函数的解析式;

(II)设,且方程有两个不同的实数根,求实数的取值范围以及这两个根的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
f(x)=(cosx﹣x)(π+2x)﹣ (sinx+1)
g(x)=3(x﹣π)cosx﹣4(1+sinx)ln(3﹣
证明:
(1)存在唯一x0∈(0, ),使f(x0)=0;
(2)存在唯一x1∈( ,π),使g(x1)=0,且对(Ⅰ)中的x0 , 有x0+x1<π.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,函数恰有两个不同的零点,求实数的值;

2)当时,

若对于任意,恒有,求的取值范围;

,求函数在区间上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆C(ab0),称圆C1x2y2a2b2为椭圆C伴随圆.已知椭圆C的离心率为,且经过点(01)

1)求实数ab的值;

2)若过点P(0m)(m0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2,求实数m的值.

查看答案和解析>>

同步练习册答案