精英家教网 > 高中数学 > 题目详情
17.已知a>0,求a+a3+a5+…+a2n-1

分析 通过a=1与a≠1,分别求解数列的和即可.

解答 解:当a=1时,a+a3+a5+…+a2n-1=n.
当a≠1时,a+a3+a5+…+a2n-1=$\frac{a(1-{a}^{2n})}{1-{a}^{2}}$.

点评 本题考查数列求和,注意分类讨论思想的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.光线沿直线l1:2x+y-2=0照射到直线l2:x+2y+2=0上后反射,则反射线所在直线l3的方程为50x-35y-74=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax2-2x+2.
(1)若f(x)的单调区间为(-∞,4),求a的取值范围;
(2)若f(x)在区间(-∞,4)上为减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-2x-4的定义域和值域相同,且都是非空连续区间M,求所有区间M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若函数f(x)=2x2+4x+a的定义域为[-1,b](b>-1),值域为[-1,b+1],求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y)-1,且当x<0时,f(x)<1
(1)求f(0)
(2)求证:f(x)在R上为增函数
(3)若f(4)=7,解不等式f(2x+1)<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.作出下列函数的图象
(1)y=1-x,x∈Z;
(2)y=|x|;
(3)y=$\left\{\begin{array}{l}{\frac{1}{x},0<x<1}\\{x,x≥1}\end{array}\right.$;
(4)y=|x+1|+|x-2|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=$\frac{a}{x-1}$在区间(1,+∞)上是减函数,则a的取值范围是a>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足an+1=3an+1,且a1=$\frac{1}{2}$
(1)设an+1+λ=3(an+λ),则{an+λ}成等比数列,求λ;
(2)求数列{an}的通项公式
(3)一般地,若an+1=san+t(s≠1,t≠0),且an+1+λ=s(an+λ),使{an+λ}成等比数列,求λ(用s,t表示)

查看答案和解析>>

同步练习册答案