精英家教网 > 高中数学 > 题目详情
若椭圆
x2
2
+
y2
m
=1
的离心率为
1
2
,则实数m等于(  )
A.
3
2
B.
3
8
C.
3
2
8
3
D.
3
8
2
3
当m>2时,
m-2
m
=
1
2
,解得m=
3
2

当m<2时,
2-m
2
=
1
2
解得m=
8
3

故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知F1、F2是椭圆
x2
16
+
y2
25
=1
的两个焦点,过F1的直线与椭圆交于M、N两点,则△MNF2的周长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆
x2
36
+
y2
25
=1的焦点F1作直线l交椭圆于A、B两点,F2是此椭圆的另一个焦点,则△ABF2的周长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P为椭圆
x2
45
+
y2
20
=1上且位于在第三象限内一点,且它与两焦点连线互相垂直,若点P到直线4x-3y-2m+1=0的距离不大于3,则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

命题P“曲线sinα•x2+cosα•y2=1为焦点在y轴上的椭圆”,写出让命题P成立的一个充分条件______(请填写关于α的值或区间)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知经过椭圆4x2+8y2=1右焦点F2的直线与椭圆有两个交点A,B,F1是椭圆的左焦点,则△F1AB的周长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知一个椭圆的中心在原点,左焦点为F(-
3
,0)
,且过D(2,0).
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,点A(1,0),求线段PA中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,其左、右两焦点分别为F1、F2.直线L经过椭圆C的右焦点F2,且与椭圆交于A、B两点.若A、B、F1构成周长为4
2
的△ABF1,椭圆上的点离焦点F2最远距离为
2
+1
,且弦AB的长为
4
2
3
,求椭圆和直线L的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆:
x2
a2
+
y2
b2
=1
(a>b>0),左右焦点分别是F1,F2,焦距为2c,若直线y=
3
(x+c)
与椭圆交于M点,满足∠MF1F2=2∠MF2F1,则离心率是(  )
A.
2
2
B.
3
-1
C.
3
-1
2
D.
3
2

查看答案和解析>>

同步练习册答案