精英家教网 > 高中数学 > 题目详情

设A(1,-1,1),B(3,1,5),则线段AB的中点在空间直角坐标系中的位置是


  1. A.
    在y轴上
  2. B.
    在xOy面内
  3. C.
    在xOz面内
  4. D.
    在yOz面内
C
分析:求出中点坐标,根据点的特征,此点的纵坐标为0,故此点是直角坐标系中xOz平面上的点.
解答:∵A(1,-1,1),B(3,1,5),
∴线段AB的中点为(2,0,3)
因为中点的纵坐标为0.
∴此点是xOz平面上的点.
故选C.
点评:空间直角坐标系下,xOy平面上的点的竖坐标为0,xOz平面上的点的纵坐标为0,yOz平面上的点的横坐标为0,本题考查是空间直角坐标系中 点的坐标中三个分量与在坐标系中的位置的对应关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a∈{-1,1,
1
2
,3}
,则使函数y=xa的定义域是R,且为奇函数的所有a的值是(  )
A、1,3B、-1,1
C、-1,3D、-1,1,3

查看答案和解析>>

科目:高中数学 来源: 题型:

平面向量也叫二维向量,二维向量的坐标表示及其运算可以推广到n(n≥3)维向量,n维向量可用(x1,x2,x3,…xn)表示,设
a
=(a1,a2,a3,…an),规定向量 
a
b
  夹角θ的余弦cosθ=
aibi
ai2bi2 
a
=(1,1,1,1),
b
=(-1,1,1,1) 时,cosθ=(  )
A、-
1
2
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设A是由n×n个实数组成的n行n列的数表,其中aij(i,j=1,2,3…,n)表示位于第i行第j列的实数,且aij∈{1,-1}.记S(n,n)为所有这样的数表构成的集合.
 a11  a12  a1n
 a21  a22  …  a2n




 …

 an1  an2  …  ann
对于A∈S(n,n),记ri(A)为A的第i行各数之积,Cj(A)为A的第j列各数之积.令l(A)=
n
i=1
ri(A)+
n
j=1
Cj(A).
(Ⅰ)对如下数表A∈S(4,4),求l(A)的值;
1 1 -1 -1
1 -1 1 1
1 -1 -1 1
-1 -1 1 1
(Ⅱ)证明:存在A∈S(n,n),使得l(A)=2n-4k,其中k=0,1,2,…,n;
(Ⅲ)给定n为奇数,对于所有的A∈S(n,n),证明:l(A)≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)设A是如下形式的2行3列的数表,
a b c
d e f
满足性质P:a,b,c,d,e,f∈[-1,1],且a+b+c+d+e+f=0.
记ri(A)为A的第i行各数之和(i=1,2),Cj(A)为A的第j列各数之和(j=1,2,3);记k(A)为|r1(A)|,|r2(A)|,|c1(A)|,|c2(A)|,|c3(A)|中的最小值.
(1)对如下数表A,求k(A)的值
1 1 -0.8
0.1 -0.3 -1
(2)设数表A形如
1 1 -1-2d
d d -1
其中-1≤d≤0.求k(A)的最大值;
(Ⅲ)对所有满足性质P的2行3列的数表A,求k(A)的最大值.

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(北京卷解析版) 题型:解答题

设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。

对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n):

记K(A)为∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   对如下数表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)设数表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因为

所以

(2)  不妨设.由题意得.又因为,所以

于是

    

所以,当,且时,取得最大值1。

(3)对于给定的正整数t,任给数表如下,

任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表

,并且,因此,不妨设

得定义知,

又因为

所以

     

     

所以,

对数表

1

1

1

-1

-1

 

综上,对于所有的的最大值为

 

查看答案和解析>>

同步练习册答案