【题目】若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)-log3|x|的零点个数是( )
A.多于4个 B.4个
C.3个 D.2个
科目:高中数学 来源: 题型:
【题目】已知f(x)=ex﹣ax2,曲线y=f(x)在(1,f(1))处的切线方程为y=bx+1.
(1)求a,b的值;
(2)求f(x)在[0,1]上的最大值;
(3)证明:当x>0时,ex+(1﹣e)x﹣xlnx﹣1≥0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的个数是( )
①命题“x0∈R,x+1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量a与b的夹角是钝角”的充要条件是“a·b<0”.
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).
(1)求曲线的直角坐标方程和直线的的普通方程;
(2)设点,若直线与曲线交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.
(1)求的值;
(2)函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如下表:
年龄(岁) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
身高(cm) | 121 | 128 | 135 | 141 | 148 | 154 | 160 |
(Ⅰ)求身高关于年龄的线性回归方程;
(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com