精英家教网 > 高中数学 > 题目详情
给出下列四个命题:①
1
0
1-x2
dx
=
π
4
,②α,β都是第三象限角,若cosα>cosβ,则sinα>sinβ,③对于两个变量之间的相关系数r,|r|≤1且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小;④设O为坐标原点,A(1,1),若点B满足
x2+y2-2x-2y+1≥0
1≤x≤2
1≤y≤2
,则
OA
OB
的最小值为2+
2
.其中正确的命题的个数是(  )
A、0B、1C、2D、3
分析:①根据定积分的几何意义可知正确;②根据三角函数线,当α,β都是第三象限角,若cosα>cosβ,则sinα<sinβ;③对于两个变量之间的相关系数的定义可知正确;④先根据点B(x,y)满足
x2+y2≥1
0≤x≤1
0≤y≤1
的平面区域,再把所求问题转化为求x+y的最小值,借助于线性规划知识即可求得结论.
解答:解:①根据定积分的几何意义,表示以原点为圆心,1为半径在第一象限的面积,故正确;②根据三角函数线,当α,β都是第三象限角,若cosα>cosβ,则sinα<sinβ,故错误;③对于两个变量之间的相关系数的定义可知正确;④x2+y2-2x-2y+1≥0即(x-1)2+(y-1)2≥1,表示以(1,1)为圆心、以1为半径的圆周及其以外的区域.
当目标函数 z=
OA
OB
=x+y
的图象同时经过目标区域上的点(1,2)、(2,1)时,目标函数z=
OA
OB
=x+y
取最小值3,故错误.
故选C.
点评:本题主要考查命题真假的判断,只有一一判断,是对基础知识的综合考查,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若a⊥α,a⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若α∥β,a?α,b?β,则a∥b;
④若α∥β,α∩γ=a,β∩γ=b,则a∥b.
其中正确命题的序号有
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=
1
x
的单调减区间是(-∞,0)∪(0,+∞);
②函数y=x2-4x+6,当x∈[1,4]时,函数的值域为[3,6];
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,则A∩B=A.
其中正确命题的序号是
③④⑤
③④⑤
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为2,锐角为60°的菱形ABCD沿较短对角线BD折成二面角A-BD-C,点E,F分别为AC,BD的中点,给出下列四个命题:
①EF∥AB;②直线EF是异面直线AC与BD的公垂线;③当二面角A-BD-C是直二面角时,AC与BD间的距离为
6
2
;④AC垂直于截面BDE.
其中正确的是
②③④
②③④
(将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中正确的命题的个数为(  )
①命题“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函数y=tan
x
2
的对称中心为(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函数;
④函数y=(x-1)2与y=2x-1在区间[0,+∞)上都是增函数,其中正确命题的序号是(  )

查看答案和解析>>

同步练习册答案