精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求的最大值和最小正周期;
(2)若是第二象限的角,求.

(1)函数的最大值为,最小正周期为;(2).

解析试题分析:(1)先利用辅助角公式将函数的解析式化简为的形式,进而求出函数的最大值与最小正周期;(2)先利用已知条件求出的值,再结合角的取值范围,求出的值,最后利用二倍角公式求出的值.
试题解析:(1)
即函数的最大值为,最小正周期为
(2)
为第二象限角,,因此
.
考点:1.辅助角公式;2.三角函数的最值;3.三角函数的周期性;4.同角三角函数的基本关系;5.二倍角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知以角为钝角的的三角形内角的对边分别为,且垂直.
(1)求角的大小;
(2)求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,的图象关于直线对称,其中为常数,且
(1)求函数的最小正周期;
(2)若的图象经过点,求函数上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,求下列各式的值:
(Ⅰ)
(Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,且图象的相邻两条对称轴间的距离为
(1)求的值;
(2)求上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)的最小正周期为
(Ⅰ)求函数的单调增区间;
(Ⅱ)将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象.求在区间上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求的最大值和最小值;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B,C的对边分别为a,b,c,且
(1)求角C的大小;
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的最小正周期及单调递减区间;
(2)若在区间上的最大值与最小值的和为,求的值.

查看答案和解析>>

同步练习册答案